Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Herman, PA; Prasad, G; McGinnity, TM (2017)
Publisher: Institute of Electrical and Electronics Engineers
Languages: English
Types: Article
One of the urgent challenges in the automated analysis and interpretation of electrical brain activity is the effective handling of uncertainties associated with the complexity and variability of brain dynamics, reflected in the nonstationary nature of brain signals such as electroencephalogram (EEG). This poses a severe problem for existing approaches to the classification task within brain–computer interface (BCI) systems. Recently emerged type-2 fuzzy logic (T2FL) methodology has shown a remarkable potential in dealing with uncertain information given limited insight into the nature of the data generating mechanism. The objective of this work is thus to examine the applicability of T2FL approach to the problem of EEG pattern recognition. In particular, the focus is two-fold: i) the design methodology for the interval T2FL system (IT2FLS) that can robustly deal with inter-session as well as within-session manifestations of nonstationary spectral EEG correlates of motor imagery (MI), and ii) the comprehensive examination of the proposed fuzzy classifier in both off-line and on-line EEG classification case studies. The on-line evaluation of the IT2FLS-controlled real-time neurofeedback over multiple recording sessions holds special importance for EEG-based BCI technology. In addition, a retrospective comparative analysis accounting for other popular BCI classifiers such as linear discriminant analysis (LDA), kernel Fisher discriminant (KFD) and support vector machines (SVMs) as well as a conventional type-1 FLS (T1FLS), simulated off-line on the recorded EEGs, has demonstrated the enhanced potential of the proposed IT2FLS approach to robustly handle uncertainty effects in BCI classification.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] S. Mitra and S. K. Pal, “Fuzzy Sets in Pattern Recognition and Machine Intelligence,” Fuzzy Sets and Syst., vol. 156, pp. 381-386, 2005.
    • [2] A. Aarabi, R. Fazel-Rezai and Y. Aghakhani, “A fuzzy rule-based system for epileptic seizure detection in intracranial EEG,” Clin. Neurophysiol., vol. 120, pp.1648-1657, 2009.
    • [3] P. Herman, G. Prasad and T. M. McGinnity, “Investigation of the type-2 fuzzy logic approach to classification in an EEG-based brain-computer interface,” in Proc. IEEE EMBC, Shanghai, Sep 2005, pp. 5354-5357.
    • [4] F. Lotte, A. Lécuyer, F. Lamarche and B. Arnaldi, “Studying the use of fuzzy inference systems for motor imagery classification,” IEEE Trans. Neural Syst. Rehab. Eng., vol. 15, no. 2, pp. 322-324, Jun 2007.
    • [5] C. Xydeas, P. Angelov, S. Chiao and M. Reoullas, “Advances in classification of EEG signals via evolving fuzzy classifiers and dependant multiple HMMs,” Comp. Biol. Med., vol. 36, pp. 1064-1083, 2006.
    • [6] M. Mahfouf, M. Abbod and D. Linkens, “A survey of fuzzy logic monitoring and control utilisation in medicine,” Artif. Intell. Med., vol. 21, pp. 27-42, 2001.
    • [7] A. Subasi, “Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction,” Comp. Biol. Med., vol. 37, no. 2, pp. 227-244, 2007.
    • [8] P. Herman, G. Prasad and T. M. McGinnity, “Designing a robust type-2 fuzzy logic classifier for non-stationary systems with application in brain-computer interfacing,” in Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC), Singapore, Oct 2008.
    • [9] D. Coyle, G. Prasad and T. M. McGinnity, “Faster self-organizing fuzzy neural network training and a hyperparameter analysis for a braincomputer interface,” IEEE Trans. Syst., Man, Cybern., vol. 39, no. 6, pp. 1458-1471, Dec 2009.
    • [10] J.-M Cano-Izquierdo, J. Ibarrola and M. Almonacid, “Improving motor imagery classification with a new BCI design using neuro-fuzzy SdFasArt,” IEEE Trans. Neural Syst. Rehab. Eng., vol.20, pp.2-7, 2012.
    • [11] T. Nguyen, A. Khosravi, D. Creighton and S. Nahavandi, “EEG signal classification for BCI applications by wavelets and interval type-2 fuzzy logic systems,” Expert Syst Appl., vol. 42, pp. 4370-4380, 2015.
    • [12] J. R. Wolpaw, N. Birbaumer, D. J. McFarland and G. Pfurtscheller, T. M. Vaughan, “Brain-computer interfaces for communication and control,” Clin. Neurophysiol., vol. 113, pp. 767-791, 2002.
    • [13] A. Emery, “Population frequencies of inherited neuromuscular diseases - a world survey,” Neuromuscul. Disord., vol. 1, pp. 19-29, 1991.
    • [14] G. Prasad, P. Herman, D. Coyle, S. McDonough and J. Crosbie, “Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study,” J. Neuroeng. Rehab., vol. 7:60, 2010. doi: 10.1186/1743-0003-7-60.
    • [15] M. Bamdad, H. Zarshenas and M. A. Auais, “Application of BCI systems in neurorehabilitation: A scoping review,” Disability and Rehabilitation: Assistive Technology, vol. 10, pp. 355-364, 2015.
    • [16] D. Marshall, D. Coyle, S. Wilson and M. Callaghan, “Games, gameplay, and BCI: The State of the Art,” IEEE Trans. Comput. Intellig. and AI in Games, vol. 5, no. 2, pp. 82-99, Jun 2013.
    • [17] J.R. Wolpaw, N. Birbaumer, J. Heetderks, D.J. McFarland, P.H. Peckham, G. Schalk, E. Donchin, L.A. Quatrano, C.J. Robinson and T.M. Vaughan, “Brain-computer interface technology: A review of the first international meeting,” IEEE Trans. Rehab. Eng., vol. 8, no. 2, pp. 164-173, Jun 2002.
    • [18] T.M. Vaughan, W.J. Heetderks, L.J. Trejo, W.Z. Rymer, M. Weinrich, M.M. Moore, A. Kubler, B.H. Dobkin, N. Birbaumer, E, Donchin, E.W. Wolpaw and J.R. Wolpaw, ”Brain-computer interface technology: A review of the second international meeting,” IEEE Trans.Neural Sys.Rehab.Eng. vol. 11, no. 2, pp. 94-109, Jun 2003.
    • [19] D. J. Krusienski, M. Grosse-Wentrup, F. Galan, D. Coyle, K. J. Miller, E. Forney and C. W. Anderson. “Critical issues in state-of-the-art braincomputer interface signal processing.” J. Neural Eng., vol. 8, no. 2, pp. 025002, 2011.
    • [20] B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe and K.-R. Muller, “Optimizing spatial filters for robust EEG single-trial analysis,” IEEE Signal Proc. Mag., vol. 25, no. 1, pp. 41-56, Jan 2008.
    • [21] Y. Li, H. Kambara, Y. Koike and M. Sugiyama, “Application of covariate shift adaptation techniques in brain-computer interfaces,” IEEE Tran. Biomed. Eng., vol. 57, no. 6, pp.1318-1324, Jun 2010.
    • [22] M. Arvaneh, C. Guan, K. K. Ang and C. Quek, “EEG Data Space Adaptation to reduce intersession nonstationary in brain-computer interface,” Neural Comput., vol. 25, pp. 2146-2171, 2013.
    • [23] P. Shenoy, M. Krauledat, B. Blankertz, R. P. N. Rao and K.-R. Müller, “Towards adaptive classification for BCI,” J. Neural Eng., vol. 3, pp. 13-23, 2006.
    • [24] C. Guger, G. Edlinger, W. Harkam, I. Niedermayer and G. Pfurtscheller, “How many people are able to operate an EEG-based BCI?” IEEE Trans. Neural Sys. Rehab. Eng., vol. 11, no. 2, pp. 145-147, Jun 2003.
    • [25] B. Blankertz, M. Kawanabe, R. Tomioka, F. Hohlefeld, V. Nikulin and K.-R. Müller, “Invariant common spatial patterns: Alleviating nonstationarities in brain-computer interfacing,” in Advances in Neural Information Processing Systems 20, pp. 113-120, 2008, MIT Press.
    • [26] G. Krausz, R. Scherer, G. Korisek and G. Pfurtscheller, “Critical decision-speed and information transfer in the Graz Brain-Computer Interface,” Appl Psychophysiol Biofeedback, vol. 28, pp. 233-240, 2003.
    • [27] J. del R. Millan, J. Mourino, M. Franze, F. Cincotti, M. Varsta, J. Heikkonen and F. Babiloni, “A local neural classifier for the recognition of EEG patterns associated to mental tasks,” IEEE Trans. Neural Net., vol. 13, no. 3, pp. 678-685, May 2002.
    • [28] R. Palaniappan, R. Paramesran, S. Nishida and N. Saiwaki, “A new brain-computer interface design using fuzzy ARTMAP,” IEEE Trans. Neural Syst. Rehab. Eng., vol. 10, no. 3, pp. 140-148, Sep 2002.
    • [29] P. Martinez, H. Bakardjian and A. Cichocki, “Fully online multicommand brain-computer interface with visual neurofeedback using SSVEP paradigm,” Comput. Intell. Neurosci., vol. 2007, pp. 94561-1- 94561-9, 2007.
    • [30] S. Bhattacharyya, M. Pal, A. Konar and D.N. Tibarewala, “An interval type-2 fuzzy approach for real-time EEG-based control of wrist and finger movement,” Biomed. Sig. Proc. Control, vol. 21, pp. 90-98, 2015.
    • [31] C. Vidaurre, M. Kawanabe, P. von Bünau, B. Blankertz and K.-R. Müller, “Toward unsupervised adaptation of LDA for BCIs,” IEEE Trans. Biomed. Eng., vol. 58, no. 3, pp. 587-597, Mar 2011.
    • [32] J. W. Yoon, S.J. Roberts, M. Dyson and J.Q. Gan, “Adaptive classification for brain computer interface systems using sequential Monte Carlo sampling,” Neural Networks, vol. 22, pp.1286-1294, 2009.
    • [33] A. Llera, V. Gómez and H. J. Kappen, “Adaptive multiclass classification for brain computer interfaces,” Neural Comput., vol. 26, pp. 61108-61127, 2014.
    • [34] J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. USA: Prentice-Hall, 2001.
    • [35] Q. Liang and J. M. Mendel, “Interval type-2 fuzzy logic systems: theory and design,” IEEE Trans. Fuzzy Sys., vol. 8, no. 5, pp. 535-550, 2000.
    • [36] P. Melin and O. Castillo, “A review on the applications of type-2 fuzzy logic in classification and pattern recognition,” Expert Syst. Appl., vol. 40, no. 13, pp. 5413-5423, 2013.
    • [37] C. H. Wang, C. S. Cheng and T. T. Lee, “Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN),” IEEE Trans. Syst., Man, Cybern., vol. 34, no. 3, pp.1462-1477, Jun 2004.
    • [38] K-R. Muller, C. W. Anderson and G. E. Birch, “Linear and nonlinear methods for brain-computer interfaces,” IEEE Trans. Neural. Syst. Rehab. Eng., vol. 11, no. 2, pp. 165-169, Jun 2003.
    • [39] J-S. Wang and C. S. G. Lee, “Self-adaptive neuro-fuzzy inference systems for classification applications,” IEEE Trans. Fuzzy Syst., vol. 10, no. 6, pp. 790-802, Dec 2002.
    • [40] E. Haselsteiner and G. Pfurtscheller, “Using time-dependent NNs for EEG classification,” IEEE Trans. Neural Sys. Rehab. Eng., vol. 8, no. 4, pp. 457-462, Dec 2000.
    • [41] E. Niedermeyer and F. Lopes da Silva, Electroencephalography: Basic Principles, Clinical Applications and Related Fields, 4th ed., Williams and Wilkins, USA, 1998.
    • [42] G. Pfurtscheller, C. Brunner, A. Schlögl and F. Lopes da Silva, “Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks,” NeuroImage, vol. 31, pp. 153-159, 2006.
    • [43] G. Pfurtscheller, C. Neuper, “Motor imagery activates primary sensorimotor area in humans,” Neuroscience Letters, vol. 239, pp. 65-68, 1997.
    • [44] J. C. Bezdek, Pattern Recognition With Fuzzy Objective Function Algorithms. NY, USA: Plenum Press, 1981.
    • [45] S. L. Chiu, “Fuzzy model identification based on cluster estimation,” J. Intell. Fuzzy Syst, vol. 2, pp. 267-278, 1994.
    • [46] R. Yager and D. Filev, “Approximate clustering by the mountain clustering,” IEEE Trans. Syst., Man, Cybern., vol. 24, no. 8, pp. 338- 358, Aug 1994.
    • [47] S. Hassan, M.A. Khanesar, E. Kayacan, J. Jaafar and A. Khosravi, “Optimal design of adaptive type-2 neuro-fuzzy systems: A review,” Appl. Soft Comput., vol. 44, pp. 134-143, 2016.
    • [48] J. M. Mendel, “Computing derivatives in interval type-2 fuzzy logic systems,” IEEE Trans. Fuzzy Syst., vol. 12, no. 1, pp. 84-98, Feb. 2004.
    • [49] N. N. Karnik and J. M. Mendel, “Centroid of a type-2 fuzzy set,” Inform. Sci., vol. 132, pp. 195-220, 2001.
    • [50] C. Wang, H Liu and C. Lin, “Dynamic optimal learning rate of a certain class of fuzzy neural networks and its applications with genetic algorithm,” IEEE Trans. Syst. Man Cybern. B, vol. 31, no. 3, pp. 467- 475, Jun 2001.
    • [51] S. Canu, Y. Grandvalet, V. Guigue and A. Rakotomamonjy, SVM and Kernel Methods Matlab Toolbox. Perception Systèmes et Information, INSA de Rouen, France, 2005.
    • [52] A. Schlögl, C. Neuper, G. Pfurtscheller, “Estimating the mutual information of an EEG-based Brain-Computer Interface,” Biomed Tech. (Berl). vol. 47, no. 1-2, pp. 3-8, 2002.
    • [53] G. Prasad, P. Herman, T.M. McGinnity, “Critical observations on type-2 fuzzy logic approach to uncertainty handling in a brain-computer interface design,” in Proc. 11th IPMU, Paris, 2006, pp. 1356-1363.
    • [54] A. Satti, C. Guan, D. Coyle and G. Prasad, “A covariate shift minimisation method to alleviate non-stationarity effects for an adaptive BCI,” in Proc. 20th ICPR, Istanbul, 2010, pp. 105-108.
    • [55] R. Tomioka, J. N. Hill, B. Blankertz, K. Aihara, “Adapting spatial filter methods for nonstationary BCIs,” in Proc. IBIS, 2006, pp. 65-70.
    • [56] C. Brunner, R. Scherer, B. Graimann, G. Supp and G. Pfurtscheller, “Online control of a brain-computer interface using phase synchronization,” IEEE Trans. Biomed. Eng., vol. 53, no. 12, pp. 2501- 2506, Dec 2006.
    • [57] C. Vidaurre, A. Schlögl, R. Cabeza, R. Scherer and G. Pfurtscheller, “Study of on-line adaptive discriminant analysis for EEG-based BCI,” IEEE Trans. Biomed. Eng., vol. 54, no. 3, pp. 550-556, Mar 2007.
    • [58] M. Hazrati and A. Erfanian, “An online EEG-based brain-computer interface for controlling,” Med Eng Phys., vol. 32, pp.730-739, 2010.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article