LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Badhan, Raj K. Singh; Chenel, Marylore; Penny, Jeffrey I. (2014)
Publisher: MDPI
Journal: Pharmaceutics
Languages: English
Types: Article
Subjects: physiologically-based pharmacokinetic model; blood–brain barrier; cerebrospinal fluid; unbound fraction; brain, physiologically-based pharmacokinetic model, blood–brain barrier, cerebrospinal fluid, unbound fraction, brain, Pharmacy and materia medica, Article, RS1-441
Central nervous system (CNS) drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB), blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF), choroidal epithelial and total cerebrospinal fluid (CSF) compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain) and CSF:plasma ratio (CSF:Plasmau) using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Brodie, B.B.; Kurz, H.; Schanker, L.S. The importance of dissociaton constant and lipid-solubility in influencing the passage of drugs into the cerebrospinal fluid. J. Pharmacol. Exp. Ther. 1960, 1, 20-25.
    • 2. Elmquist, W.F.; Sawchuk, R.J. Application of microdialysis in pharmacokinetic studies. Pharm. Res. 1997, 3, 267-288.
    • 3. Hammarlund-Udenaes, M.; Paalzow, L.K.; de Lange, E.C. Drug equilibration across the blood-brain barrier-Pharmacokinetic considerations based on the microdialysis method. Pharm. Res. 1997, 2, 128-134.
    • 4. Yang, H.; Peters, J.L.; Michael, A.C. Coupled effects of mass transfer and uptake kinetics on in vivo microdialysis of dopamine. J. Neurochem. 1998, 2, 684-692.
    • 5. Syvanen, S.; Lindhe, O.; Palner, M.; Kornum, B.R.; Rahman, O.; Langstrom, B.; Knudsen, G.M.; Hammarlund-Udenaes, M. Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab. Dispos. 2009, 3, 635-643.
    • 6. Friden, M.; Ljungqvist, H.; Middleton, B.; Bredberg, U.; Hammarlund-Udenaes, M. Improved measurement of drug exposure in the brain using drug-specific correction for residual blood. J. Cereb. Blood Flow Metab. 2010, 1, 150-161.
    • 7. Cordon-Cardo, C.; OʼBrien, J.P.; Casals, D.; Rittman-Grauer, L.; Biedler, J.L.; Melamed, M.R.; Bertino, J.R. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc. Natl. Acad. Sci. USA 1989, 2, 695-698.
    • 8. Thiebaut, F.; Tsuruo, T.; Hamada, H.; Gottesman, M.M.; Pastan, I.; Willingham, M.C. Immunohistochemical localization in normal tissues of different epitopes in the multidrug transport protein P170: Evidence for localization in brain capillaries and crossreactivity of one antibody with a muscle protein. J. Histochem. Cytochem. 1989, 2, 159-164.
    • 9. Cisternino, S.; Mercier, C.; Bourasset, F.; Roux, F.; Scherrmann, J.-M. Expression, up-regulation, and transport activity of the multidrug-resistance protein Abcg2 at the mouse blood-brain barrier. Cancer Res. 2004, 9, 3296-3301.
    • 10. Sun, H.; Dai, H.; Shaik, N.; Elmquist, W.F. Drug efflux transporters in the CNS. Adv. Drug Deliv. Rev. 2003, 1, 83-105.
    • 11. Uhr, M.; Grauer, M.T. Abcb1ab P-glycoprotein is involved in the uptake of citalopram and trimipramine into the brain of mice. J. Psychiatr. Res. 2003, 3, 179-185.
    • 12. Wang, J.-S.; Taylor, R.; Ruan, Y.; Donovan, J.L.; Markowitz, J.S.; Lindsay de Vane, C. Olanzapine penetration into brain is greater in transgenic Abcb1a P-glycoprotein-deficient mice than FVB1 (wild-type) animals. Neuropsychopharmacology 2004, 3, 551-557.
    • 13. Doran, A.; Obach, R.S.; Smith, B.J.; Hosea, N.A.; Becker, S.; Callegari, E.; Chen, C.; Chen, X.; Choo, E.; Cianfrogna, J.; et al. The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: Evaluation using the MDR1A/1B knockout mouse model. Drug Metab. Dispos. 2005, 1, 165-174.
    • 14. Tahara, H.; Kusuhara, H.; Fuse, E.; Sugiyama, Y. P-glycoprotein plays a major role in the efflux of fexofenadine in the small intestine and blood-brain barrier, but only a limited role in its biliary excretion. Drug Metab. Dispos. 2005, 7, 963-968.
    • 15. Breedveld, P.; Pluim, D.; Cipriani, G.; Wielinga, P.; van Tellingen, O.; Schinkel, A.H.; Schellens, J.H.M. The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): Implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res. 2005, 7, 2577-2582.
    • 16. Ose, A.; Kusuhara, H.; Yamatsugu, K.; Kanai, M.; Shibasaki, M.; Fujita, T.; Yamamoto, A.; Sugiyama, Y. P-glycoprotein restricts the penetration of oseltamivir across the blood-brain barrier. Drug Metab. Dispos. 2008, 2, 427-434.
    • 17. Enokizono, J.; Kusuhara, H.; Sugiyama, Y. Effect of breast cancer resistance protein (Bcrp/Abcg2) on the disposition of phytoestrogens. Mol. Pharmacol. 2007, 4, 967-975.
    • 18. Welch, K.J.; Stewart, W.; Lebowitz, R.L. Non-obstructive megacystis and refuluxing megaureter in pre-teen enuretic boys with minimal symptoms. J. Urol. 1975, 3, 449-454.
    • 19. Saito, Y.; Wright, E.M. Regulation of intracellular chloride in bullfrog choroid plexus. Brain Res. 1987, 2, 267-272.
    • 20. Strazielle, N.; Ghersi-Egea, J.F. Factors affecting delivery of antiviral drugs to the brain. Rev. Med. Virol. 2005, 2, 105-133.
    • 21. Pardridge, W.M. Blood-brain barrier drug targeting: The future of brain drug development. Mol. Interv. 2003, 2, 90-105.
    • 22. Johanson, C.E.; Stopa, E.G.; McMillan, P.N. The blood-cerebrospinal fluid barrier: Structure and functional significance. Methods Mol. Biol. 2011, 686, 101-131.
    • 23. Del Bigio, M.R. The ependyma: A protective barrier between brain and cerebrospinal fluid. Glia 1995, 1, 1-13.
    • 24. Zetterqvist, H. The Ultrastructural Organization of the Columnar Absorbing Cells of the Mouse Jejunum; Aktiebolaget Godvil: Stockholm, Sweden, 1956.
    • 25. Brown, A.L. Microvilli of the human jejunal epithelial cell. J. Cell Biol. 1962, 3, 623-627.
    • 26. Cserr, H.F.; Bundgaard, M.; Ashby, J.K.; Murray, M. On the anatomic relation of choroid plexus to brain: A comparative study. Am. J. Physiol. 1980, 1, R76-R81.
    • 27. Keep, R.F.; Jones, H.C. A morphometric study on the development of the lateral ventricle choroid plexus, choroid plexus capillaries and ventricular ependyma in the rat. Brain Res. Dev. Brain Res. 1990, 1, 47-53.
    • 28. Speake, T.; Brown, P.D. Ion channels in epithelial cells of the choroid plexus isolated from the lateral ventricle of rat brain. Brain Res. 2004, 1-2, 60-66.
    • 29. Ennis, S.R.; Keep, R.F. The effects of cerebral ischemia on the rat choroid plexus. J. Cereb. Blood Flow Metab. 2006, 5, 675-683.
    • 30. Rao, V.V.; Dahlheimer, J.L.; Bardgett, M.E.; Snyder, A.Z.; Finch, R.A.; Sartorelli, A.C.; Piwnica-Worms, D. Choroid plexus epithelial expression of MDR1 P-glycoprotein and multidrug resistance-associated protein contribute to the blood-cerebrospinal-fluid drug-permeability barrier. Proc. Natl. Acad. Sci. USA 1999, 7, 3900-3905.
    • 31. Zhuang, Y.; Fraga, C.H.; Hubbard, K.E.; Hagedorn, N.; Panetta, J.C.; Waters, C.M.; Stewart, C.F. Topotecan central nervous system penetration is altered by a tyrosine kinase inhibitor. Cancer Res. 2006, 23, 11305-11313.
    • 32. Hammarlund-Udenaes, M. Active-site concentrations of chemicals-Are they a better predictor of effect than plasma/organ/tissue concentrations? Basic Clin. Pharmacol. Toxicol. 2010, 3, 215-220.
    • 33. De Lange, E.C.; Ravenstijn, P.G.; Groenendaal, D.; van Steeg, T.J. Toward the prediction of CNS drug-effect profiles in physiological and pathological conditions using microdialysis and mechanism-based pharmacokinetic-pharmacodynamic modeling. AAPS J. 2005, 3, E532-E543.
    • 34. Friden, M.; Winiwarter, S.; Jerndal, G.; Bengtsson, O.; Wan, H.; Bredberg, U.; Hammarlund-Udenaes, M.; Antonsson, M. Structure-brain exposure relationships in rat and human using a novel data set of unbound drug concentrations in brain interstitial and cerebrospinal fluids. J. Med. Chem. 2009, 20, 6233-6243.
    • 35. Kalvass, J.C.; Maurer, T.S. Influence of nonspecific brain and plasma binding on CNS exposure: Implications for rational drug discovery. Biopharm. Drug Dispos. 2002, 8, 327-338.
    • 36. Reichel, A. Addressing central nervous system (CNS) penetration in drug discovery: Basics and implications of the evolving new concept. Chem. Biodivers. 2009, 11, 2030-2049.
    • 37. Hammarlund-Udenaes, M.; Bredberg, U.; Friden, M. Methodologies to assess brain drug delivery in lead optimization. Curr. Top. Med. Chem. 2009, 2, 148-162.
    • 38. Liu, X.; Smith, B.J.; Chen, C.; Callegari, E.; Becker, S.L.; Chen, X.; Cianfrogna, J.; Doran, A.C.; Doran, S.D.; Gibbs, J.P.; et al. Use of a physiologically based pharmacokinetic model to study the time to reach brain equilibrium: An experimental analysis of the role of blood-brain barrier permeability, plasma protein binding, and brain tissue binding. J. Pharmacol. Exp. Ther. 2005, 3, 1254-1262.
    • 39. Summerfield, S.G.; Dong, K.C. In vitro, in vivo and in silico models of drug distribution into the brain. J. Pharmacokinet. Pharmacodyn. 2013, 3, 301-314.
    • 40. Sadiq, M.W.; Bostrom, E.; Keizer, R.; Bjorkman, S.; Hammarlund-Udenaes, M. Oxymorphone active uptake at the blood-brain barrier and population modeling of its pharmacokineticpharmacodynamic relationship. J. Pharm. Sci. 2013, 102, 3320-3331.
    • 41. Westerhout, J.; Ploeger, B.; Smeets, J.; Danhof, M.; de Lange, E.C. Physiologically based pharmacokinetic modeling to investigate regional brain distribution kinetics in rats. AAPS J. 2012, 3, 543-553.
    • 42. Sadiq, M.W.; Borgs, A.; Okura, T.; Shimomura, K.; Kato, S.; Deguchi, Y.; Jansson, B.; Bjorkman, S.; Terasaki, T.; Hammarlund-Udenaes, M. Diphenhydramine active uptake at the blood-brain barrier and its interaction with oxycodone in vitro and in vivo. J. Pharm. Sci. 2011, 9, 3912-3923.
    • 43. Ball, K.; Bouzom, F.; Scherrmann, J.M.; Walther, B.; Decleves, X. Development of a physiologically based pharmacokinetic model for the rat central nervous system and determination of an in vitro-in vivo scaling methodology for the blood-brain barrier permeability of two transporter substrates, morphine and oxycodone. J. Pharm. Sci. 2012, 11, 4277-4292.
    • 44. Garberg, P.; Ball, M.; Borg, N.; Cecchelli, R.; Fenart, L.; Hurst, R.D.; Lindmark, T.; Mabondzo, A.; Nilsson, J.E.; Raub, T.J.; et al. In vitro models for the blood-brain barrier. Toxicol. In Vitro 2005, 3, 299-334.
    • Hakkarainen, J.J.; Jalkanen, A.J.; Kaariainen, T.M.; Keski-Rahkonen, P.; Venalainen, T.; Hokkanen, J.; Monkkonen, J.; Suhonen, M.; Forsberg, M.M. Comparison of in vitro cell models in predicting in vivo brain entry of drugs. Int. J. Pharm. 2010, 1-2, 27-36.
    • Neuhaus, W.; Stessl, M.; Strizsik, E.; Bennani-Baiti, B.; Wirth, M.; Toegel, S.; Modha, M.; Winkler, J.; Gabor, F.; Viernstein, H.; et al. Blood-brain barrier cell line PBMEC/C1-2 possesses functionally active P-glycoprotein. Neurosci. Lett. 2010, 2, 224-228.
    • Roux, F.; Couraud, P.-O. Rat brain endothelial cell lines for the study of blood-brain barrier permeability and transport functions. Cell. Mol. Neurobiol. 2005, 1, 41-58.
    • Brain Res. 2013, 1521, 16-30.
    • Patabendige, A.; Skinner, R.A.; Abbott, N.J. Establishment of a simplified in vitro porcine blood-brain barrier model with high transendothelial electrical resistance. Brain Res. 2013, 1521, 1-15.
    • Lundquist, S.; Renftel, M.; Brillault, J.; Fenart, L.; Cecchelli, R.; Dehouck, M.P. Prediction of drug transport through the blood-brain barrier in vivo: A comparison between two in vitro cell models. Pharm. Res. 2002, 7, 976-981.
    • Nicolazzo, J.A.; Charman, S.A.; Charman, W.N. Methods to assess drug permeability across the blood-brain barrier. J. Pharm. Pharmacol. 2006, 3, 281-293.
    • Reichel, A.; Begley, D.J.; Abbott, N.J. An overview of in vitro techniques for blood-brain barrier studies. Methods Mol. Med. 2003, 89, 307-324.
    • Kodaira, H.; Kusuhara, H.; Fujita, T.; Ushiki, J.; Fuse, E.; Sugiyama, Y. Quantitative evaluation of the impact of active efflux by P-glycoprotein and breast cancer resistance protein at the blood-brain barrier on the predictability of the unbound concentrations of drugs in the brain using cerebrospinal fluid concentration as a surrogate. J. Pharmacol. Exp. Ther. 2011, 3, 935-944.
    • Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J. Control. Release 2011, 2, 333-345.
    • Uchida, Y.; Ohtsuki, S.; Kamiie, J.; Terasaki, T. Blood-brain barrier (BBB) pharmacoproteomics: Reconstruction of in vivo brain distribution of 11 P-glycoprotein substrates based on the BBB transporter protein concentration, in vitro intrinsic transport activity, and unbound fraction in plasma and brain in mice. J. Pharmacol. Exp. Ther. 2011, 2, 579-588.
    • Kamiie, J.; Ohtsuki, S.; Iwase, R.; Ohmine, K. Quantitative atlas of membrane transporter proteins: Development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in silico peptide selection criteria. Pharm. Res. 2008, 25, 1469-1483.
    • Hoshi, Y.; Uchida, Y.; Tachikawa, M.; Inoue, T.; Ohtsuki, S.; Terasaki, T. Quantitative atlas of blood-brain barrier transporters, receptors, and tight junction proteins in rats and common marmoset. J. Pharm. Sci. 2013, 102, 3343-3355.
    • Brown, R.P.; Delp, M.D.; Lindstedt, S.L.; Rhomberg, L.R.; Beliles, R.P. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol. Ind. Health 1997, 4, 407-484.
    • Rodgers, T.; Leahy, D.; Rowland, M. Physiologically based pharmacokinetic modeling 1: Predicting the tissue distribution of moderate-to-strong bases. J. Pharm. Sci. 2005, 6, 1259-1276.
    • 60. Rodgers, T.; Rowland, M. Physiologically based pharmacokinetic modelling 2: Predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J. Pharm. Sci. 2006, 6, 1238-1257.
    • 61. Bois, F.Y. Statistical analysis of Fisher et al. PBPK model of trichloroethylene kinetics. Environ. Health Perspect. 2000, 108, 275-282.
    • 62. West, G.B.; Brown, J.H.; Enquist, B.J. A general model for the origin of allometric scaling laws in biology. Science 1997, 5309, 122-126.
    • 63. Meno-Tetang, G.M.L.; Li, H.; Mis, S.; Pyszczynski, N.; Heining, P.; Lowe, P.; Jusko, W.J. Physiologically based pharmacokinetic modeling of FTY720 (2-amino-2[2-(-4-octylphenyl)ethyl] propane-1,3-diol hydrochloride) in rats after oral and intravenous doses. Drug Metab. Dispos. 2006, 9, 1480-1487.
    • 64. Davies, B.; Morris, T. Physiological parameters in laboratory animals and humans. Pharm. Res. 1993, 7, 1093-1095.
    • 65. Eyal, S.; Ke, B.; Muzi, M.; Link, J.M.; Mankoff, D.A.; Collier, A.C.; Unadkat, J.D. Regional P-glycoprotein activity and inhibition at the human blood-brain barrier as imaged by positron emission tomography. Clin. Pharmacol. Ther. 2010, 5, 579-585.
    • 66. Stange, K.; Greitz, D.; Ingvar, M.; Hindmarsh, T.; Sollevi, A. Global cerebral blood flow during infusion of adenosine in humans: Assessment by magnetic resonance imaging and positron emission tomography. Acta Physiol. Scand. 1997, 2, 117-122.
    • 67. Jay, T.M.; Lucignani, G.; Crane, A.M.; Jehle, J.; Sokoloff, L. Measurement of local cerebral blood flow with [14C]iodoantipyrine in the mouse. J. Cereb. Blood Flow Metab. 1988, 1, 121-129.
    • 68. Abbott, N.J. Evidence for bulk flow of brain interstitial fluid: Significance for physiology and pathology. Neurochem. Int. 2004, 4, 545-552.
    • 69. Johnson, M.D.; Anderson, B.D. In vitro models of the blood-brain barrier to polar permeants: Comparison of transmonolayer flux measurements and cell uptake kinetics using cultured cerebral capillary endothelial cells. J. Pharm. Sci. 1999, 6, 620-625.
    • 70. Lin, J.H. Applications and limitations of interspecies scaling and in vitro extrapolation in pharmacokinetics. Drug Metab. Dispos. 1998, 12, 1202-1212.
    • 71. Houston, J.B. Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance. Biochem. Pharmacol. 1994, 9, 1469-1479.
    • 72. Iwatsubo, T.; Suzuki, H.; Shimada, N.; Chiba, K.; Ishizaki, T.; Green, C.E.; Tyson, C.A.; Yokoi, T.; Kamataki, T.; Sugiyama, Y. Prediction of in vivo hepatic metabolic clearance of YM796 from in vitro data by use of human liver microsomes and recombinant P-450 isozymes. J. Pharmacol. Exp. Ther. 1997, 2, 909-919.
    • 73. Bayliss, M.K.; Bell, J.A.; Jenner, W.N.; Wilson, K. Prediction of intrinsic clearance of loxtidine from kinetic studies in rat, dog and human hepatocytes. Biochem. Soc. Trans. 1990, 6, 1198-1199.
    • 74. Bank, N.; Aynedjian, H.S.; Qiu, J.H.; Osei, S.Y.; Ahima, R.S.; Fabry, M.E.; Nagel, R.L. Renal nitric oxide synthases in transgenic sickle cell mice. Kidney Int. 1996, 1, 184-189.
    • 75. Hammarlund-Udenaes, M.; Friden, M.; Syvanen, S.; Gupta, A. On the rate and extent of drug delivery to the brain. Pharm. Res. 2008, 8, 1737-1750.
    • 76. Ooie, T.; Terasaki, T.; Suzuki, H.; Sugiyama, Y. Kinetic evidence for active efflux transport across the blood-brain barrier of quinolone antibiotics. J. Pharmacol. Exp. Ther. 1997, 1, 293-304.
    • Ooie, T.; Terasaki, T.; Suzuki, H.; Sugiyama, Y. Quantitative brain microdialysis study on the mechanism of quinolones distribution in the central nervous system. Drug Metab. Dispos. 1997, 7, 784-789.
    • Grabb, P.A.; Gilbert, M.R. Neoplastic and pharmacological influence on the permeability of an in vitro blood-brain barrier. J. Neurosurg. 1995, 6, 1053-1058.
    • A new model of the blood-brain barrier: Co-culture of neuronal, endothelial and glial cells under dynamic conditions. Neuroreport 1999, 18, 3725-3731.
    • Parkinson, F.E.; Friesen, J.; Krizanac-Bengez, L.; Janigro, D. Use of a three-dimensional in vitro model of the rat blood-brain barrier to assay nucleoside efflux from brain. Brain Res. 2003, 2, 233-241.
    • Parkinson, F.E.; Hacking, C. Pericyte abundance affects sucrose permeability in cultures of rat brain microvascular endothelial cells. Brain Res. 2005, 1, 8-14.
    • Perriere, N.; Yousif, S.; Cazaubon, S.; Chaverot, N.; Bourasset, F.; Cisternino, S.; Decleves, X.; Hori, S.; Terasaki, T.; Deli, M.; et al. A functional in vitro model of rat blood-brain barrier for molecular analysis of efflux transporters. Brain Res. 2007, 1150, 1-13.
    • Strazielle, N.; Ghersi-Egea, J.F. Demonstration of a coupled metabolism-efflux process at the choroid plexus as a mechanism of brain protection toward xenobiotics. J. Neurosci. 1999, 15, 6275-6289.
    • Hoffmeyer, S.; Burk, O.; von Richter, O.; Arnold, H.P.; Brockmoller, J.; Johne, A.; Cascorbi, I.; Gerloff, T.; Roots, I.; Eichelbaum, M.; et al. Functional polymorphisms of the human multidrug-resistance gene: Multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl. Acad. Sci. USA 2000, 7, 3473-3478.
    • Shirasaka, Y.; Sakane, T.; Yamashita, S. Effect of P-glycoprotein expression levels on the concentration-dependent permeability of drugs to the cell membrane. J. Pharm. Sci. 2008, 1, 553-565.
    • Adachi, Y.; Suzuki, H.; Sugiyama, Y. Comparative studies on in vitro methods for evaluating in vivo function of MDR1 P-glycoprotein. Pharm. Res. 2001, 12, 1660-1668.
    • Simultaneous central nervous system distribution and pharmacokinetic-pharmacodynamic modelling of the electroencephalogram effect of norfloxacin administered at a convulsant dose in rats. Br. J. Pharmacol. 2004, 2, 323-330.
    • Drug Metab. Dispos. 2007, 9, 1711-1719.
    • J. Pharmacol. Toxicol. Methods 1997, 2, 87-92.
    • 91. Fenneteau, F.; Turgeon, J.; Couture, L.; Michaud, V.; Li, J.; Nekka, F. Assessing drug distribution in tissues expressing P-glycoprotein through physiologically based pharmacokinetic modeling: Model structure and parameters determination. Theor. Biol. Med. Model. 2009, 6, 2:1-2:13.
    • 92. Polli, J.W.; Humphreys, J.E.; Wring, S.A.; Burnette, T.C. A comparison of Madin-Darby canine kidney cells and bovine brain endothelial cells as a blood-brain barrier screen in early drug discovery. In Progress in the Reduction, Refinement and Replacement of Animal Experimentation; Balls, M., van Zeller, A.M., Halder, M.E., Eds.; Elsevier Sciences: Amsterdam, The Netherlands, 2000; pp. 271-289.
    • 93. Merino, G.; Alvarez, A.I.; Pulido, M.M.; Molina, A.J.; Schinkel, A.H.; Prieto, J.G. Breast cancer resistance protein (BCRP/ABCG2) transports fluoroquinolone antibiotics and affects their oral availability, pharmacokinetics, and milk secretion. Drug Metab. Dispos. 2006, 4, 690-695.
    • 94. Delon, A.; Pariat, C.; Courtois, P.; Bouquet, S.; Couet, W. A new approach for early assessment of the epileptogenic potential of quinolones. Antimicrob. Agents Chemother. 1998, 10, 2756-2758.
    • 95. Liu, X.; Smith, B.J.; Chen, C.; Callegari, E.; Becker, S.L.; Chen, X.; Cianfrogna, J.; Doran, A.C.; Doran, S.D.; Gibbs, J.P.; et al. Evaluation of cerebrospinal fluid concentration and plasma free concentration as a surrogate measurement for brain free concentration. Drug Metab. Dispos. 2006, 9, 1443-1447.
    • 96. Summerfield, S.G.; Read, K.; Begley, D.J.; Obradovic, T.; Hidalgo, I.J.; Coggon, S.; Lewis, A.V.; Porter, R.A.; Jeffrey, P. Central nervous system drug disposition: The relationship between in situ brain permeability and brain free fraction. J. Pharmacol. Exp. Ther. 2007, 1, 205-213.
    • 97. Kalvass, J.C.; Maurer, T.S.; Pollack, G.M. Use of plasma and brain unbound fractions to assess the extent of brain distribution of 34 drugs: Comparison of unbound concentration ratios to in vivo P-glycoprotein efflux ratios. Drug Metab. Dispos. 2007, 4, 660-666.
    • 98. Urien, S.; Pinquier, J.L.; Paquette, B.; Chaumet-Riffaud, P.; Kiechel, J.R.; Tillement, J.P. Effect of the binding of isradipine and darodipine to different plasma proteins on their transfer through the rat blood-brain barrier. Drug binding to lipoproteins does not limit the transfer of drug. J. Pharmacol. Exp. Ther. 1987, 1, 349-353.
    • 99. Jolliet, P.; Simon, N.; Bree, F.; Urien, S.; Pagliara, A.; Carrupt, P.A.; Testa, B.; Tillement, J.P. Blood-to-brain transfer of various oxicams: Effects of plasma binding on their brain delivery. Pharm. Res. 1997, 5, 650-656.
    • 100. Tanaka, H.; Mizojiri, K. Drug-protein binding and blood-brain barrier permeability. J. Pharmacol. Exp. Ther. 1999, 3, 912-918.
    • 101. Zheng, W.; Zhao, Q. Establishment and characterization of an immortalized Z310 choroidal epithelial cell line from murine choroid plexus. Brain Res. 2002, 2, 371-380.
    • 102. Shen, D.D.; Artru, A.A.; Adkison, K.K. Principles and applicability of CSF sampling for the assessment of CNS drug delivery and pharmacodynamics. Adv. Drug Deliv. Rev. 2004, 12, 1825-1857.
    • 103. Wong, S.L.; Wang, Y.; Sawchuk, R.J. Analysis of zidovudine distribution to specific regions in rabbit brain using microdialysis. Pharm. Res. 1992, 3, 332-338.
    • 104. Van Amsterdam, C.; Lemaire, M. Pharmacokinetic profile of SDZ EAA 494 in blood, brain and CSF using microdialysis. Eur. J. Pharm. Sci. 1997, 2, 109-116.
    • 105. Hammarlund-Udenaes, M. The use of microdialysis in CNS drug delivery studies. Pharmacokinetic perspectives and results with analgesics and antiepileptics. Adv. Drug Del. Rev. 2000, 2-3, 283-294.
    • 106. Sjostedt, N.; Kortejarvi, H.; Kidron, H.; Vellonen, K.S.; Urtti, A.; Yliperttula, M. Challenges of using in vitro data for modeling P-glycoprotein efflux in the blood-brain barrier. Pharm. Res. 2014, 31, 1-19.
    • 107. Griffiths, N.M.; Hirst, B.H.; Simmons, N.L. Active intestinal secretion of the fluoroquinolone antibacterials ciprofloxacin, norfloxacin and pefloxacin; a common secretory pathway? J. Pharmacol. Exp. Ther. 1994, 2, 496-502.
    • 108. Hansch, C.; Leo, A.; Hoekman, D.H. Exploring QSAR.: Fundamentals and Applications in Chemistry and Biology; American Chemical Society: Washington, DC, USA, 1995.
    • 109. Davis, J.D.; Aarons, L.; Houston, J.B. Effect of norfloxacin on theophylline disposition: A comparison with other fluoroquinolones. Pharm. Res. 1995, 2, 257-262.
    • 110. Hallifax, D.; Foster, J.A.; Houston, J.B. Prediction of human metabolic clearance from in vitro systems: Retrospective analysis and prospective view. Pharm. Res. 2010, 10, 2150-2161.
    • 111. Hedman, A.; Angelin, B.; Arvidsson, A.; Dahlqvist, R.; Nilsson, B. Interactions in the renal and biliary elimination of digoxin: Stereoselective difference between quinine and quinidine. Clin. Pharmacol. Ther. 1990, 1, 20-26.(112)
    • 112. Thyssen, A.; Vermeulen, A.; Fuseau, E.; Fabre, M.A.; Mannaert, E. Population pharmacokinetics of oral risperidone in children, adolescents and adults with psychiatric disorders. Clin. Pharmacokinet. 2010, 7, 465-478.
    • 113. Ratain, M.J.; Vogelzang, N.J.; Sinkule, J.A. Interpatient and intrapatient variability in vinblastine pharmacokinetics. Clin. Pharmacol. Ther. 1987, 1, 61-67.(114)
    • 114. Eiseman, J.L.; Eddington, N.D.; Leslie, J.; MacAuley, C.; Sentz, D.L.; Zuhowski, M.; Kujawa, J.M.; Young, D.; Egorin, M.J. Plasma pharmacokinetics and tissue distribution of paclitaxel in CD2F1 mice. Cancer Chemother. Pharmacol. 1994, 6, 465-471. (111)
    • 115. Takasato, Y.; Rapoport, S.I.; Smith, Q.R. An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am. J. Physiol. 1984, 3, H484-H493.
    • 116. Liu, X.; Tu, M.; Kelly, R.S.; Chen, C.; Smith, B.J. Development of a computational approach to predict blood-brain barrier permeability. Drug Metab. Dispos. 2004, 1, 132-139.
    • 117. Gratton, J.A.; Abraham, M.H.; Bradbury, M.W.; Chadha, H.S. Molecular factors influencing drug transfer across the blood-brain barrier. J. Pharm. Pharmacol. 1997, 12, 1211-1216.
    • 118. Suzuki, H.; Sawada, Y.; Sugiyama, Y.; Iga, T.; Hanano, M. Facilitated transport of benzylpenicillin through the blood-brain barrier in rats. J. Pharmacobiodyn. 1989, 3, 182-185.
    • 119. Rapoport, S.I.; Ohno, K.; Pettigrew, K.D. Drug entry into the brain. Brain Res. 1979, 2, 354-359.
    • 120. Murakami, H.; Takanaga, H.; Matsuo, H.; Ohtani, H.; Sawada, Y. Comparison of blood-brain barrier permeability in mice and rats using in situ brain perfusion technique. Am. J. Physiol. Heart Circ. Physiol. 2000, 3, H1022-H1028.
    • 121. Enokizono, J.; Kusuhara, H.; Ose, A.; Schinkel, A.H.; Sugiyama, Y. Quantitative investigation of the role of breast cancer resistance protein (Bcrp/Abcg2) in limiting brain and testis penetration of xenobiotic compounds. Drug Metab. Dispos. 2008, 6, 995-1002.
    • 122. Youdim, K.A.; Qaiser, M.Z.; Begley, D.J.; Rice-Evans, C.A.; Abbott, N.J. Flavonoid permeability across an in situ model of the blood-brain barrier. Free Radic. Biol. Med. 2004, 5, 592-604.
    • 123. Dagenais, C.; Graff, C.L.; Pollack, G.M. Variable modulation of opioid brain uptake by P-glycoprotein in mice. Biochem. Pharmacol. 2004, 2, 269-276.
    • 124. Zhao, R.; Kalvass, J.C.; Pollack, G.M. Assessment of blood-brain barrier permeability using the in situ mouse brain perfusion technique. Pharm. Res. 2009, 7, 1657-1664.
    • 125. Chen, W.; Yang, J.Z.; Andersen, R.; Nielsen, L.H.; Borchardt, R.T. Evaluation of the permeation characteristics of a model opioid peptide, H-Tyr-D-Ala-Gly-Phe-D-Leu-OH (DADLE), and its cyclic prodrugs across the blood-brain barrier using an in situ perfused rat brain model. J. Pharmacol. Exp. Ther. 2002, 2, 849-857.
    • 126. Dagenais, C.; Zong, J.; Ducharme, J.; Pollack, G.M. Effect of mdr1a P-glycoprotein gene disruption, gender, and substrate concentration on brain uptake of selected compounds. Pharm. Res. 2001, 7, 957-963.
    • 127. Stevenson, I.H. Factors influencing antipyrine elimination. Br. J. Clin. Pharmacol. 1977, 3, 261-265.
    • 128. OʼNeil, M.J. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals; Merck: Whitehouse Station, NJ, USA, 2001.
    • 129. Ullrich, K.J.; Rumrich, G. Renal contraluminal transport systems for organic anions (paraaminohippurate, PAH) and organic cations (N1-methyl-nicotinamide, NMeN) do not see the degree of substrate ionization. Pflugers Arch. 1992, 2-3, 286-288.
    • 130. Martin, A.N. Physical Pharmacy, 2nd Ed.; Lea & Febiger: Philadelphia, PA, USA, 1969; Volume 1.
    • 131. Streng, W.H. Microionization constants of commercial cephalosporins. J. Pharm. Sci. 1978, 5, 666-669.
    • 132. Tomlinson, E.; Hafkenscheid, T.L. Aqueous solution and partition coefficient estimation from HPLC data. In Partition Coefficient, Determination and Estimation; Dunn, W.J., Block, J.H., Pearlman, R.S., Eds.; Pergamon Press: New York, NY, USA, 1986; Volume 1, pp. 101-141.
    • 133. Sangster, J. Octanol-Water Partition Coefficients: Fundamentals and Physical Chemistry, 1st ed.; Wiley: New York, NY, USA, 1994; Volume 1.
    • 134. McLure, J.A.; Miners, J.O.; Birkett, D.J. Nonspecific binding of drugs to human liver microsomes. Br. J. Clin. Pharmacol. 2000, 5, 453-461.
    • 135. Deak, K.; Takacs-Novak, K.; Tihanyi, K.; Noszal, B. Physico-chemical profiling of antidepressive sertraline: Solubility, ionisation, lipophilicity. Med. Chem. 2006, 4, 385-389.
    • 136. El Tayar, N.; van de Waterbeemd, H.; Testa, B. Lipophilicity measurements of protonated basic compounds by reversed-phase high-performance liquid chromatography: II. Procedure for the determination of a lipophilic index measured by reversed-phase high-performance liquid chromatography. J. Chromatogr. 1985, 2, 305-312.
    • 137. Blum, W.; Phelps, M.A.; Klisovic, R.B.; Rozewski, D.M.; Ni, W.; Albanese, K.A.; Rovin, B.; Kefauver, C.; Devine, S.M.; Lucas, D.M.; et al. Phase I clinical and pharmacokinetic study of a novel schedule of flavopiridol in relapsed or refractory acute leukemias. Haematologica 2010, 7, 1098-1105.
    • 138. Ronfeld, R.A.; Tremaine, L.M.; Wilner, K.D. Pharmacokinetics of sertraline and its N-demethyl metabolite in elderly and young male and female volunteers. Clin. Pharmacokinet. 1997, 32, 22-30.
    • 139. Bres, J.; Bressolle, F. Pharmacokinetics of sulpiride in humans after intravenous and intramuscular administrations. J. Pharm. Sci. 1991, 12, 1119-1124.
    • 140. Scavone, J.M.; Blyden, G.T.; Greenblatt, D.J. Lack of effect of influenza vaccine on the pharmacokinetics of antipyrine, alprazolam, paracetamol (acetaminophen) and lorazepam. Clin. Pharmacokinet. 1989, 3, 180-185.
    • 141. Scavone, J.M.; Greenblatt, D.J.; Abernethy, D.R.; Luna, B.G.; Harmatz, J.S.; Shader, R.I. Influence of oral contraceptive use and cigarette smoking, alone and together, on antipyrine pharmacokinetics. J. Clin. Pharmacol. 1997, 5, 437-441.
    • 142. Thompson, G.A.; St Peter, J.V.; Heise, M.A.; Horowitz, Z.D.; Salyers, G.C.; Charles, T.T.; Brezovic, C.; Russell, D.A.; Skare, J.A.; Powell, J.H. Assessment of doxylamine influence on mixed function oxidase activity upon multiple dose oral administration to normal volunteers. J. Pharm. Sci. 1996, 11, 1242-1247.
    • 143. Rumble, R.H.; Roberts, M.S.; Scott, A.R. The effects of posture on the pharmacokinetics of intramuscular benzylpenicillin. Eur. J. Clin. Pharmacol. 1988, 6, 629-635.
    • 144. Birkett, D.J.; Miners, J.O. Caffeine renal clearance and urine caffeine concentrations during steady state dosing. Implications for monitoring caffeine intake during sports events. Br. J. Clin. Pharmacol. 1991, 4, 405-408.
    • 145. Brogard, J.M.; Pinget, M.; Dorner, M.; Lavillaureix, J. Determination of cefalexin pharmacokinetics and dosage adjustments in relation to renal function. J. Clin. Pharmacol. 1975, 10, 666-673.
    • 146. Larsson, R.; Erlanson, P.; Bodemar, G.; Walan, A.; Bertler, A.; Fransson, L.; Norlander, B. The pharmacokinetics of cimetidine and its sulphoxide metabolite in patients with normal and impaired renal function. Br. J. Clin. Pharmacol. 1982, 2, 163-170.
    • 147. Stuck, A.E.; Frey, F.J.; Heizmann, P.; Brandt, R.; Weidekamm, E. Pharmacokinetics and metabolism of intravenous and oral fleroxacin in subjects with normal and impaired renal function and in patients on continuous ambulatory peritoneal dialysis. Antimicrob. Agents Chemother. 1989, 3, 373-381.
    • 148. Setchell, K.D.; Faughnan, M.S.; Avades, T.; Zimmer-Nechemias, L.; Brown, N.M.; Wolfe, B.E.; Brashear, W.T.; Desai, P.; Oldfield, M.F.; Botting, N.P.; et al. Comparing the pharmacokinetics of daidzein and genistein with the use of 13C-labeled tracers in premenopausal women. Am. J. Clin. Nutr. 2003, 2, 411-419.
    • 149. Hughes, I.E.; Ilett, K.F.; Jellett, L.B. The distribution of quinidine in human blood. Br. J. Clin. Pharmacol. 1975, 6, 521-525.
    • 150. Verme, C.N.; Ludden, T.M.; Clementi, W.A.; Harris, S.C. Pharmacokinetics of quinidine in male patients. A population analysis. Clin. Pharmacokinet. 1992, 6, 468-480.
  • No related research data.
  • No similar publications.