LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Huckstepp, Robert T. R.; Dale, Nicholas (2011)
Publisher: Springer-Verlag
Journal: Pflugers Archiv
Languages: English
Types: Article
Subjects: Transducer, Secretion, Kir, CO2, Physiology, Ion Channels, Receptors and Transporters, Clinical Biochemistry, Inward rectifier, Hyperpolarization, Physiology (medical), Chemosensitivity, QP
CO2 chemosensing is a vital function for the\ud maintenance of life that helps to control acid–base balance.\ud Most studies have reported that CO2 is measured via its\ud proxy, pH. Here we report an inwardly rectifying channel,\ud in outside-out excised patches from HeLa cells that was\ud sensitive to modest changes in PCO2 under conditions of\ud constant extracellular pH. As PCO2 increased, the open\ud probability of the channel increased. The single-channel\ud currents had a conductance of 6.7 pS and a reversal\ud potential of –70 mV, which lay between the K+ and Cl–\ud equilibrium potentials. This reversal potential was shifted\ud by +61 mV following a tenfold increase in extracellular\ud [K+] but was insensitive to variations of extracellular [Cl–].\ud The single-channel conductance increased with extracellular\ud [K+]. We propose that this channel is a member of the\ud Kir family. In addition to this K+ channel, we found that\ud many of the excised patches also contained a conductance\ud carried via a Cl–-selective channel. This CO2-sensitive Kir\ud channel may hyperpolarize excitable cells and provides a\ud potential mechanism for CO2-dependent inhibition during\ud hypercapnia.

Share - Bookmark

Cite this article