LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Peneau, Virginie; Shaw, Greg; Armstrong, Robert; Jenkins, Robert Leyshon; Dimitratos, Nikolaos; Taylor, Stuart Hamilton; Zanthoff, Horst; Pietz, Stefan; Stochniol, Guido; Hutchings, Graham John (2016)
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Subjects: QD
We report the oxidation of propane under mild aqueous conditions using H2O2 as the oxidant. Various reaction conditions have been studied with a view to optimising the conversion of propane in the presence of a Fe/ ZSM-5 (30) catalyst. Process optimisation afforded 52% propane conversion in 0.5 h at a temperature of 70 oC. C3 products are shown to undergo sequential catalytic C-C scission and oxidation reactions in the presence of the catalysts, yielding C2 and C1 products. This leads to an inverse relationship between propane conversion and reaction selectivity. Addition of Cu to Fe /ZSM-5 (30) shifted reaction selectivity towards propene (≤ 34 %) with increasing conversion.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 17.8 to 5.2% respectively, with corresponding increases in formic acid selectivity (24.7 % to 40.5 %)
    • and acetic acid selectivity (8.3 % to 16.9 %). Cracking of primary C3 to secondary C2 and C1 products
    • was clearly catalytic in nature, and these transformations are studied later in this article. [5] R.K. Grasselli, J.D. Burrington, Oxidation of Low-Molecular-Weight Hydrocarbons, in: Handbook
    • of Heterogeneous Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, 2008. [6] M.M. Bhasin, J.H. McCain, B.V. Vora, T. Imai, P.R. Pujadó, Dehydrogenation and
    • oxydehydrogenation of paraffins to olefins, Applied Catalysis A: General, 221 (2001) 397-419. [7] R. Raja, C.R. Jacob, P. Ratnasamy, Direct oxidation of propane to isopropanol, Catalysis Today, 49
    • (1999) 171-175. [8] S. Sifniades, A.B. Levy, H. Bahl, Acetone, in: Ullmann's Encyclopedia of Industrial Chemistry,
    • Wiley-VCH Verlag GmbH & Co. KGaA, 2000. [9] F. Frusteri, L. Spadaro, C. Espro, A. Parmaliana, F. Arena, Liquid-phase selective oxidation of
    • propane on silica-supported Nafion catalysts, J. Nat. Gas Chem., 11 (2002) 180-185. [10] N.A. Mashayekhi, M.C. Kung, H.H. Kung, Selective oxidation of hydrocarbons on supported Au
    • catalysts, Catal. Today, 238 (2014) 74-79. [11] E. Balcells, F. Borgmeier, I. Grißtede, H.G. Lintz, Partial Oxidation of Propane and Propene to
    • Acrylic Acid over a Mo-V-Te-Nb Oxide Catalyst, Catalysis Letters, 87 (2003) 195-199. [12] S. Hernández-Morejudo, A. Massó, E. García-González, P. Concepción, J.M. López Nieto,
    • MoVTeO catalysts, Applied Catalysis A: General. [13] M. Lin, T.B. Desai, F.W. Kaiser, P.D. Klugherz, Reaction pathways in the selective oxidation of
    • propane over a mixed metal oxide catalyst, Catalysis Today, 61 (2000) 223-229. [14] M.M. Lin, Selective oxidation of propane to acrylic acid with molecular oxygen, Applied Catalysis
    • A: General, 207 (2001) 1-16. [15] E.K. Novakova, J.C. Védrine, E.G. Derouane, Propane Oxidation on Mo-V-Sb-Nb Mixed-Oxide
    • Catalysts: 1. Kinetic and Mechanistic Studies, Journal of Catalysis, 211 (2002) 226-234. [16] M. Sun, J. Zhang, P. Putaj, V. Caps, F. Lefebvre, J. Pelletier, J.-M. Basset, Catalytic Oxidation of
    • Light Alkanes (C1-C4) by Heteropoly Compounds, Chemical Reviews, 114 (2014) 981-1019. [17] W. Li, K. Oshihara, W. Ueda, Catalytic performance for propane selective oxidation and surface
    • properties of 12-molybdophosphoric acid treated with pyridine, Appl. Catal., A, 182 (1999) 357-363. [18] T. Mazari, C.R. Marchal, S. Hocine, N. Salhi, C. Rabia, Oxidation of propane over substituted
    • Keggin phosphomolybdate salts, J. Nat. Gas Chem., 18 (2009) 319-324. [19] A.T. Guttmann, R.K. Grasselli, J.F. Brazdil, Ammoxidation of paraffins and catalysts therefor, in,
    • Google Patents, 1988. [20] K. Kadowaki, T. Koshikawa, B. Oshida, Process for production of acrylic acid, in, Google Patents,
    • 1975. [21] E.V. Kudrik, P. Afanasiev, D. Bouchu, J.-M.M. Millet, A.B. Sorokin, Diiron N-bridged species
    • conditions, Journal of Porphyrins and Phthalocyanines, 12 (2008) 1078-1089. [22] M.M. Forde, R.D. Armstrong, C. Hammond, Q. He, R.L. Jenkins, S.A. Kondrat, N. Dimitratos, J.A.
    • Oxygenates Using Fe- and Cu-Containing ZSM‑5, Journal of the American Chemical Society, 135
    • (2013) 11087-11099. [23] M.M. Forde, R.D. Armstrong, R. McVicker, P.P. Wells, N. Dimitratos, Q. He, L. Lu, R.L. Jenkins, C.
    • treatment, Chemical Science, 5 (2014) 3603-3616. [24] C. Hammond, M.M. Forde, M.H.a. Rahim, A. Thetford, Q. He, R.L. Jenkins, N. Dimitratos, J.A.
    • Aqueous Medium by using Copper-Promoted Fe-ZSM-5, Angewandte Communications, 51 (2012)
    • 5129-5133. [25] C. Hammond, R.L. Jenkins, N. Dimitratos, J.A. Lopez-Sanchez, M.H.a. Rahim, M.M. Forde, A.
    • promoted Fe-ZSM-5, Chemistry-A European Journal, 18 (2012) 15735-15745. [26] A.K.M.L. Rahman, R. Indo, H. Hagiwara, T. Ishihara, Direct conversion of ethane to acetic acid
    • over H-ZSM-5 using H2O2 in aqueous phase, Applied Catalysis A: General, 456 (2013) 82-87. [27] A.K.M.L. Rahman, M. Kumashiro, T. Ishihara, Direct synthesis of formic acid by partial oxidation
    • of methane on H-ZSM-5 solid acid catalyst, Catalysis Communications, 12 (2011) 1198-1200. [28] M.G. Clerici, Oxidation of saturated hydrocarbons with hydrogen peroxide, catalyzed by
    • titanium silicalite, Appl. Catal., 68 (1991) 249-261. [29] D.R.C. Huybrechts, The oxidation of saturated hydrocarbon chains, in, Exxon Chemical Patents,
    • Inc., USA . 1990, pp. 20 pp. [30] D.R.C. Huybrechts, L. De Bruycker, P.A. Jacobs, Oxyfunctionalization of alkanes with hydrogen
    • peroxide on titanium silicalite, Nature (London), 345 (1990) 240-242. [31] C.B. Khouw, C.B. Dartt, J.A. Labinger, M.E. Davis, Studies on the catalytic oxidation of alkanes
    • and alkenes by titanium silicates, J. Catal., 149 (1994) 195-205.
    • oxygenation with H2O2 catalyzed by titanosilicalite TS-1, Tetrahedron Letters 47 (2006) 3071-3075. [33] G. Vayssilov, Theoretical Modelling of Propane Partial Oxidation over Titanium Silicalites, in: E.
    • of Light Alkanes, Springer Netherlands, 1998, pp. 439-445. [34] M.M. Forde, L. Kesavan, M.I.b. Saiman, Q. He, N. Dimitratos, J.A. Lopez-Sanchez, R.L. Jenkins,
    • Impregnation, ACS Nano, 8 (2014) 957-969. [35] M.M. Forde, R.D. Armstrong, R. McVicker, P.P. Wells, N. Dimitratos, Q. He, L. Lu, R.L. Jenkins, C.
    • treatment, Chemical Science, 5 (2014) 3603-3616. [36] R.D. Armstrong, S.J. Freakley, M.M. Forde, V. Peneau, R.L. Jenkins, S.H. Taylor, J.A. Moulijn, D.J.
    • and Cu-ZSM-5 in a continuous flow reactor, Journal of Catalysis, 330 (2015) 84-92. [37] C. Hammond, I. Hermans, N. Dimitratos, Biomimetic Oxidation with Fe-ZSM-5 and H2O2?
    • Resonance- Enhanced Raman Spectroscopy, ChemCatChem, 7 (2015) 434-440. [38] W.G. Barb, J.H. Baxendale, P. George, K.R. Hargrave, Reactions of Ferrous and Ferric Ions with
    • Hydrogen Peroxide, Nature, 163 (1949) 692-694. [39] C. Hammond, N. Dimitratos, R.L. Jenkins, J.A. Lopez-Sanchez, S.A. Kondrat, M. Hasbi ab Rahim,
    • G.J. Hutchings, Elucidation and Evolution of the Active Component within Cu/Fe/ZSM-5 for Catalytic
    • Methane Oxidation: From Synthesis to Catalysis, ACS Catalysis, 3 (2013) 689-699. [40] J.J. Bravo-Suárez, K.K. Bando, T. Fujitani, S.T. Oyama, Mechanistic study of propane selective
    • oxidation with H2 and O2 on Au/TS-1, Journal of Catalysis, 257 (2008) 32-42. [41] J.J. Bravo-Suarez, K.K. Bando, T. Akita, T. Fujitani, T.J. Fuhrer, S.T. Oyama, Propane reacts with
    • O2 and H2 on gold supported TS-1 to form oxygenates with high selectivity, Chem. Commun.
    • (Cambridge, U. K.), (2008) 3272-3274. [42] M. Haruta, S. Tsubota, T. Hayashi, Method for production of alcohol, ketone, and aldehyde by
    • Trade and Industry, Japan . 1996, pp. 9 pp. [43] B. Kerler, A. Martin, A. Jans, M. Baerns, Partial oxidation of propane in compressed carbon
    • dioxide using CoOx/SiO2 catalysts, Applied Catalysis A: General, 220 (2001) 243-252.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article