Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Kumar, S.; Singh, S.K.; Vaishnav, J.K.; Hill, J.; Das, A. (2017)
Publisher: Wiley: 12 months
Languages: English
Types: Article
π-hydrogen bonding interactions are ubiquitous in both materials and biology. Despite their relatively weak nature great progress has been made in their investigation by experimental and theoretical methods, but this becomes significantly more complicated when secondary intermolecular interactions are present. In this study the effect of successive methyl substitution on the supramolecular structure and interaction energy of indole⋯methylated benzene (ind⋯n-mb, n = 1–6) complexes is probed through a combination of supersonic jet experiment and benchmark quality quantum chemical calculations. It is demonstrated that additional secondary interactions introduce a subtle interplay among electrostatic and dispersion forces, as well as steric repulsion, which fine-tunes the overall structural motif. Resonant Two-Photon Ionization (R2PI) and IR-UV double resonance spectroscopy techniques were used to probe jet-cooled ind⋯n-mb (n = 2, 3, 6) complexes, with red-shifting of the N–H IR stretching frequency showing that increasing the degree of methyl substitution increases the strength of the primary N–H⋯π interaction. Ab initio harmonic frequency and binding energy calculations confirm this trend for all six complexes. Electronic spectra of the three dimers are broad and structureless, with quantum chemical calculations revealing that this is likely due to multiple tilted conformations of each dimer possessing similar stabilization energies.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • E. G. Brown, Ring Nitrogen and Key Biomolecules, Springer Netherlands, Dordrecht, 1998. S. K. Burley, G. A. Petsko, FEBS letters 1986, 203, 139.
    • M. Levitt, M. F. Perutz, J. Mol. Biol. 1988, 201, 751.
    • E. A. Meyer, R. K. Castellano, F. Diederich, Angew. Chem. Int. Ed. 2003, 42, 1210.
    • G. Duan, V. H. Smith, D. F. Weaver, J. Phys. Chem. A 2000, 104, 4521.
    • R. M. Hughes, M. L. Waters, J. Am. Chem. Soc. 2006, 128, 13586.
    • G. Tóth, R. F. Murphy, S. Lovas, J. Am. Chem. Soc. 2001, 123, 11782.
    • S. Sarkhel, G. R. Desiraju, Proteins: Struct. Funct. Bioinf. 2004, 54, 247.
    • G. R. Desiraju, T. Steiner, The Weak Hydrogen Bond: In Structural Chemistry and Biology, Oxford University Press, 2001. T. Steiner, Angew. Chem. Int. Ed. 2002, 41, 48.
    • T. Steiner, G. Koellner, J. Mol. Biol. 2001, 305, 535.
    • J. F. Malone, C. M. Murray, M. H. Charlton, R. Docherty, A. J. Lavery, J. Chem. Soc. Faraday Trans. 1997, 93, 3429. G. A. Worth, R. C. Wade, J. Phys. Chem. 1995, 99, 17473.
    • J. Braun, H. J. Neusser, P. Hobza, J. Phys. Chem. A 2003, 107, 3918.
    • I. Dauster, C. A. Rice, P. Zielke, M. A. Suhm, Phys. Chem. Chem. Phys. 2008, 10, 2827. S. Kumar, V. Pande, A. Das, J. Phys. Chem. A 2012, 116, 1368.
    • S. Kumar, A. Das, J. Chem. Phys. 2012, 137, 094309.
    • S. Kumar, P. Biswas, I. Kaul, A. Das, J. Phys. Chem. A 2011, 115, 7461.
    • M. Mons, I. Dimicoli, B. Tardivel, F. Piuzzi, V. Brenner, P. Millié, Phys. Chem. Chem. Phys. 2002, 4, 571. P. Ottiger, C. Pfaffen, R. Leist, S. Leutwyler, R. A. Bachorz, W. Klopper, J. Phys. Chem. B 2009, 113, 2937. C. Pfaffen, D. Infanger, P. Ottiger, H.-M. Frey, S. Leutwyler, Phys. Chem. Chem. Phys. 2011, 13, 14110. M. Saggu, N. M. Levinson, S. G. Boxer, J. Am. Chem. Soc.2012, 134, 18986.
    • H. S. Biswal, E. Gloaguen, M. Mons, S. Bhattacharyya, P. R. Shirhatti, S. Wategaonkar, J. Phys. Chem. A 2011, 115, 9485. V. Chandrasekaran, L. Biennier, E. Arunan, D. Talbi, R. Georges, J. Phys. Chem. A 2011, 115, 11263. M. Pitoňák, P. Neogrády, J. R̆ezáč, P. Jurečka, M. Urban, P. Hobza, J. Chem. Theory Comput. 2008, 4, 1829. W. Wang, M. Pitoňák, P. Hobza, ChemPhysChem 2007, 8, 2107.
    • K. O. Börnsen, H. L. Selzle, E. W. Schlag, J. Chem. Phys. 1986, 85, 1726.
    • K. C. Janda, J. C. Hemminger, J. S. Winn, S. E. Novick, S. J. Harris, W. Klemperer, J. Chem. Phys. 1975, 63, 1419. J. Řezáč, P. Hobza, J. Chem. Theory Comput. 2008, 4, 1835.
    • M. O. Sinnokrot, C. D. Sherrill, J. Phys. Chem. A 2004, 108, 10200.
    • S. Tsuzuki, T. Uchimaru, K.-i. Sugawara, M. Mikami, J. Chem. Phys. 2002, 117, 11216. J. B. O. Mitchell, C. L. Nandi, I. K. McDonald, J. M. Thornton, S. L. Price, J. Mol. Biol. 1994, 239, 315. Y. Geng, T. Takatani, E. G. Hohenstein, C. D. Sherrill, J. Phys. Chem. A 2010, 114, 3576. D. A. Rodham, S. Suzuki, R. D. Suenram, F. J. Lovas, S. Dasgupta, W. A. Goddard, G. A. Blake, Nature 1993, 362, 735. G. R. Desiraju, J. Chem. Sci. (Bangalore, India) 2010, 122, 667.
    • E. C. Lee, D. Kim, P. Jurečka, P. Tarakeshwar, P. Hobza, K. S. Kim, J. Phys. Chem. A 2007, 111, 3446. E. Arunan, H. S. Gutowsky, J. Chem. Phys. 1993, 98, 4294.
    • S. Ahnen, A.-S. Hehn, K. D. Vogiatzis, M. A. Trachsel, S. Leutwyler, W. Klopper, Chem. Phys. 2014, 441, 17. C. E. Dessent, W. D. Geppert, S. Ullrich, K. Müller-Dethlefs, Chem. Phys. Lett. 2000, 319, 375. D. Reha, H. Valdes, J. Vondrasek, P. Hobza, A. Abu-Riziq, B. Crews, M. S. de Vries, Chem.-Eur. J. 2005, 11, 6803. J. Rezac, D. Nachtigallova, F. Mazzoni, M. Pasquini, G. Pietraperzia, M. Becucci, K. Muller-Dethlefs, P. Hobza, Chem.-Eur. J. 2015, 21, 6740. E. G. Buchanan, W. H. James, 3rd, S. H. Choi, L. Guo, S. H. Gellman, C. W. Muller, T. S. Zwier, J. Chem. Phys. 2012, 137, 094301.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article