LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wang, Ruichen; Cattley, Robert; Tian, X.; Gu, Fengshou; Ball, Andrew (2013)
Publisher: University of Huddersfield
Languages: English
Types: Part of book or chapter of book
Subjects: T1, TA
At present, regenerative active suspension is more attractive than conventional suspension of road vehicles for the improvement of ride comfort, performance, stability, passenger safety and the reduction of energy dissipation with regenerative energy. In a real application, the energy dissipation results in a reduction of the performance of the vehicle as well as high-energy consumption. This paper presents a hybrid shock absorber model with a modified shock absorber, which combines a hydraulic motor with a generator to recover the energy that would be otherwise wasted from vibrational motion of the suspension and transform it into useful electricity. The instantaneous oil pressures have been evaluated in the inlet and outlet pipelines using different sinusoidal wave excitation. The feasibility of the energy recovery features of this system are investigated by measuring the hydraulic motor shaft speed and the pressures at the inlet and outlet pipelines. The existing structure will be further optimized as future work to improve its performance.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 3
    • 1
    • 5
    • 5
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article