You have just completed your registration at OpenAire.
Before you can login to the site, you will need to activate your account.
An e-mail will be sent to you with the proper instructions.
Important!
Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version
of the site upon release.
This is a mathematical study of certain aspects of the interacting electron system in very high perpendicular magnetic field.
We analyse restrictions imposed upon the density correlation functions of this system and propose a set of sum rules which they must obey.
We study the possibility of building a bosonisation scheme for the projected density operators in the lowest Landau level. We suggest a second order bosonisation, along with an approximation scheme, which may be useful for carrying out calculations in the lowest Landau level.
We analyse the possible ground states of the system. We suggest a set of variational wavefunctions which can have lower energy than the Laughlin state for sufficiently soft interaction potentials.
We study the collective excitations of the system, paying particular attention to its symmetries. We suggest a set of variational excited states and discuss their applicability to finite as well as infinite systems.
[5] Y. Guldner, J. P. Hirtz, A. Briggs, J. P. Vieren, M. Voos, and M. Razeghi. Quantum hall effect and hopping conduction in ingaas-inp heterojunctions at low temperature. Surface Science, 142:179-181, 1984.
[6] Y. Ono. Localization of electrons under strong magnetic fields in a twodimensional system. J. Phys. Soc. Jpn, 51(1):237-243, 1982.
[7] R. Woltjer. Model for the quantised hall effect due to inhomogeneities. Semicond. Sci. Tech., 4:155-167, 1989.
[8] K. von Klitzing, G. Dorda, and M. Pepper. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett., 45(6):494-497, 1980.
[10] B. I. Halperin. Quantized hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B, 25(4):2185-2190, 1982.
[11] R. B. Laughlin. Quantized hall conductivity in two dimensions. Phys. Rev. B, 23(10):5632-5633, 1981.
[13] J. K. Jain, S. A. Kivelson, and N. Trivedi. Scaling theory of the fractional quantum hall effect. Phys. Rev. Lett., 64(11):1297-1300, 1990.
[14] J. K. Jain. Incompressible quantum hall states. Phys. Rev. B, 40(11):8079-8082, 1989.
[15] R. B. Laughlin. Quantized motion of three two-dimensional electrons in a strong magnetic field. Phys. Rev. B, 27(6):3383-3389, 1983.
[16] A. M. Chang, P. Berglund, D. C. Tsui, H. L. Stormer, and J. C. M. Hwang. Higher-order states in the multiple-series, fractional quantum hal effect. Phys, Rev. Lett., 53(10):997-1000, 1984.
[17] H. L. Stormer, A. Chang, D. C. Tsui, J. C. M. Hwang, A. C. Gossard, and W. Wiegmann. Factional quantization of the hall effect. Phys. Rev. Lett., 50(24):1953-1956, 1983.
[18] H. Buhmann, W. Joss, K. von Klitzing, I. V. Kukushkin, G. Martinez, A. S. Plaut, K. Ploog, and V. B. Timofeev. Magneto-optical evidence for fractional quantum hall states down to filling factor 1/9. Phys. Rev. Lett., 65(8):1056-1059, 1990.
[20] A. H. MacDonald, K. L. Liu, S. M. Girvin, and P. M. Platzman. Disorder and the fractional quantum hall effect: Activation energies and the collapse of the gap. Phys. Rev. B, 33(6):4014-4020, 1986.
[21] C. Kallin and B. I. Halperin. Excitations from a filled landau level in the twodimensional electron gas. Phys. Rev. B, 30(10):5655-5668, 1984.
[22] L. L. Sohn, A. Pinczuk, B. S. Dennis, L. N. Pfeiffer, K. W. West, and L. Brey. Dispersive collective excitation modes in the quantum hall regime. Solid State Comm., 93(11):897-902, 1995.
[23] N. J. Pulsford, I. V. Kukushkin, P. Hawrylak, K. Ploog, R. J. Haug, K. von Klitzing, and V. B. Timofeev. Luminescence measurements of two-dimensional electrons in the regime of the integer and fractional quantum hall effects. Phys. Stat. Sol., 173:271-280, 1992.
[24] A. J. Turberfield, S. R. Haynes, P. A. Wright, R. A. Ford, R. G. Clark, J. Ryan, J. J. Harris, and C. T. Foxon. Optical detection of the integer and fractional quantum hall effects in gaas. Phys. Rev. Lett., 65(5):637-640, 1990.
[25] A. Pinczuk, B. S. Dennis, L. N. Pfeiffer, and K. W. West. Inelastic light scattering in the regimes of the integer and fractional quantum hall effects. Semicond. Sci. Tech., 9:1865-1870, 1994.
[26] J. E. Digby, U. Zeitler, C. J. Mellor, A. J. Kent, K. A. Benedict, L. J. Challis, J. R. Middleton, and T. Cheng. Time-resolved phonon absorption in the fractional quantum hall regime. Surf. Sci., 361:34-37, 1996.
[27] C. J. Mellor, J. E. Digby, R. H. Eyles, A. J. Kent, K. A. Benedict, L. J. Challis, M. Henini, C. T. Foxon, and J. J. Harris. Phonon studies of the fractional quantum hall effect. Physica B, 211:400-403, 1995.
[28] R. R. Du, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, and K. W. West. Experimental evidence for new particles in the fractional quantum hall effect. Phys. Rev. Lett., 70(19):2944-2947, 1993.
[29] F. C. Zhang and S. Das Sarma. Excitation gap in the fractional quantum hall effect: Finite layer thickness corrections. Phys. Rev. B, 33(4):2903-2905, 1986.
[30] D. Yoshioka. Excitation energies of the fractional quantum hall effect. J. Phys. Soc. Jpn., 55(3):885-896, 1986.
[32] S. Kawaji, J. Wakabayashi, J. Yoshino, and H. Sakaki. Activation energies of the 1/3 and 2/3 fractional quantum hall effect in gaas/algaas heterostructures. J. Phys. Soc. Jpn., 53(6):1915-1918, 1984.
[33] A. M. Chang, M. A. Paalanen, D. C. Tsui, H. L. Stormer, and J. C. M. Hwang. Fractional quantum hall effect at low temperatures. Phys. Rev. B, 28(10):6133- 6136, 1983.
[34] J. K. Jain. Composite-fermion approach for the fractional quantum hall effect. Phys. Rev. Lett., 63(2):199-202, 1989.
[40] N. d'Ambrumenil and R. Morf. Hierarchical classification of fractional quantum hall states. Phys. Rev. B, 40(9):6108-6119, 1989.
[41] R. B. Laughlin. Primitive and composite ground states in the fractional quantum hall effect. Surf. Sci., 142:163-172, 1984.
[42] T. Chakraborty. Elementary excitations in the fractional quantum hall effect. Phys. Rev. B, 31(6):4026-4028, 1985.
[43] E. H. Rezayi and F. D. M. Haldane. Incompressible states of the fractionally quantized hall effect in the presence of impurities: A finite-size study. Phys. Rev. B, 32(10):6924-6927, 1985.
[44] A. Pinczuk, B. S. Dennis, L. N. Pfeiffer, and K. West. Observation of collective excitations in the fractional quantum hall effect. Phys. Rev. Lett., 70(25):3983- 3986, 1993.
[50] S. M. Girvin, A. H. MacDonald, and P. M. Platzman. Magneto-roton theory of collective excitations in the fractional quantum hall effect. Phys. Rev. B, 33:2481-2494, 1986.
[51] R. Loudon. The Quantum Theory of Light. Oxford University Press, 1992.
[52] R. P. Feynman. Statistical Mechanics. W. A. Benjamin, Inc, 1972.
[53] Daniel P.Arovas and Scot R.Renn. Bogoliubov theory of coulomb-coupled [m↑m↓0] quantum hall states. Phys. Rev. B, 50:15408-15411, 1994.