Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hirohata, A.; Gardiner, S.M.; Rothman, J.; Klaui, M.; Lopez-Diaz, L.; Chen, Y.; Cambril, E.; Rousseaux, F.; Xu, Y.B.; Tselepi, M.; Bland, J.A.C. (2001)
Languages: English
Types: Article

Classified by OpenAIRE into

arxiv: Condensed Matter::Mesoscopic Systems and Quantum Hall Effect, Condensed Matter::Materials Science
The domain structure and the coercivity of epitaxial Fe(100) circular dot arrays of different diameters and separations have been studied using magnetic force microscopy (MFM) and focused magneto-optical Kerr effect (MOKE). The MFM images of the 1 µm diameter single domain dot arrays show direct evidence of strong interdot dipole coupling when the separation is reduced down to 0.1 µm. The coercivity of the dots is also found to be dependent on the separation, indicating the effect of the interdot dipole coupling on the magnetization reversal process.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] F. E. Luborsky, “Development of enlongated particle magnets,” J. Appl. Phys. (Supp.), vol. 32, pp. 171S-183S, 1961.
    • [2] J. N. Chapman et al., “Mapping induction distributions by transmission electron-microscopy,” Appl. Phys. Lett., vol. 69, p. 6978, 1991.
    • [3] J. G. Zhu et al., “Micromagnetics of small size patterned exchange biased Permalloy film elements,” J. Appl. Phys., vol. 81, p. 4336, 1997.
    • [4] R. D. Gomez et al., “Domain configurations of nanostructured Permalloy elements,” J. Appl. Phys., vol. 85, p. 6163, 1999.
    • [5] Y. B. Xu et al., “Magnetoresistance of a domain wall at a submicron junction,” Phys. Rev. B, vol. 61, p. R14901, 2000.
    • [6] R. P. Cowburn et al., “Single-domain circular nanomagnets,” Phys. Rev. Lett., vol. 83, p. 1042, 1999.
    • [7] M. Mehn et al., “Nanoscale magnetic domains in mesoscopic magnets,” Science, vol. 272, p. 1782, 1996.
    • [8] E. Gu et al., “Micromagnetism of epitaxial Fe(001) elements on the mesoscale,” Phys. Rev. Lett., vol. 78, p. 1158, 1997.
    • [9] C. Stamm et al., “Two-dimensional magnetic particles,” Science, vol. 282, p. 449, 1998.
    • [10] J. Yu et al., “Micromagnetics of mesoscopic epitaxial Fe(110) elements with nanoshaped ends,” J. App. Phys., vol. 85, p. 5501, 1999.
    • [11] O. Fruchart et al., “Enhanced coercivity in submicrometer-sized ultrathin epitaxial dots with in-plane magnetization,” Phys. Rev. Lett., vol. 82, p. 1305, 1999.
    • [12] Y. B. Xu et al., “Micromagnetism in mesoscopic epitaxial Fe dot arrays,” J. Appl. Phys., vol. 87, p. 7019, 2000.
    • [13] L. Thomas et al., “Micromagnetism of submicron Fe(110) elements,” Appl. Phys. Lett., vol. 76, p. 766, 2000.
    • [14] M. Zolfl et al., “Epitaxial nanomagnets with intrinsic uniaxial in-plane magnetic anisotropy,” J. Appl. Phys., vol. 87, p. 7016, 2000.
    • [15] B. Hillebrands et al., “Brillouin light scattering investigations of structured permalloy films,” J. App. Phys., vol. 81, p. 4993, 1997.
    • [16] J. Jorzick et al., “Spin-wave quantization and dynamic coupling in micron-size circular magnetic dots,” Appl. Phys. Lett., vol. 75, p. 3859, 1999.
    • [17] M. Grimsditch et al., “Magnetic anisotropies in dot arrays: Shape anisotropy versus coupling,” Phys. Rev. B, vol. 58, p. 11 539, 1998.
    • [18] S. Wirth et al., “Magnetism of nanometer-scale iron particles arrays,” J. Appl. Phys., vol. 85, p. 5249, 1999.
    • [19] J. J. Krebs et al., “Properties of Fe single-crystal films on GaAs(100) by molecular beam epitaxy,” J. Appl. Phys., vol. 61, p. 2596, 1987.
    • [20] C. Daboo et al., “Anisotropy and orientational dependence of magnetization reversal processes in epitaxial ferromagnetic thin films,” Phys. Rev. B, vol. 51, p. 15 964, 1995.
    • [21] Y. B. Xu et al., “Evolution of the ferromagnetic phase of ultrathin Fe films grown on GaAs(100)-4 6,” Phys. Rev. B, vol. 58, p. 890, 1998.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article