LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Warburton, Ryan E.; Intermite, Giuseppe; Myronov, Maksym; Allred, Phil; Leadley, D. R. (David R.); Gallacher, Kevin; Paul, Douglas J. (Professor of Semiconductor Devices); Pilgrim, Neil J.; Lever, Leon J. M.; Ikonic, Zoran; Kelsall, Robert W.; Huante-Ceron, Edgar; Knights, Andrew P.; Buller, G. S. (Gerald S.) (2013)
Publisher: Institute of Electrical and Electronics Engineers
Languages: English
Types: Article
Subjects: QC, TK
The design, modeling, fabrication, and characterization of single-photon avalanche diode detectors with an epitaxial Ge absorption region grown directly on Si are presented. At 100 K, a single-photon detection efficiency of 4% at 1310 nm wavelength was measured with a dark count rate of ~ 6 megacounts/s, resulting in the lowest reported noise-equivalent power for a Ge-on-Si single-photon avalanche diode detector (1×10-14 WHz-1/2). The first report of 1550 nm wavelength detection efficiency measurements with such a device is presented. A jitter of 300 ps was measured, and preliminary tests on after-pulsing showed only a small increase (a factor of 2) in the normalized dark count rate when the gating frequency was increased from 1 kHz to 1 MHz. These initial results suggest that optimized devices integrated on Si substrates could potentially provide performance comparable to or better than that of many commercially available discrete technologies.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nature Photon., vol. 1, no. 6, pp. 343-348, Jun. 2007.
    • [2] R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett., vol. 32, no. 15, pp. 2266-2268, Aug. 2007.
    • [3] D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, M. Nakazato, and T. Sakai, “Development of a 1.6 μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photoncounting detector for the vertical CO2 profile,” Appl. Opt., vol. 48, no. 4, pp. 748-757, Feb. 2009.
    • [4] J. L. O'Brien, A. Furusawa, and J. Vucˇkovicˇ, “Photonic quantum technologies,” Nature Photon., vol. 3, no. 12, pp. 687-695, 2009.
    • [5] A. Lacaita, F. Zappa, S. Cova, and P. Lovati, “Single-photon detection beyond 1 μm: Performance of commercially available InGaAs/lnP detectors,” Appl. Opt., vol. 35, no. 16, pp. 2986-2996, Jun. 1996.
    • [6] S. Pellegrini, R. E. Warburton, L. J. J. Tan, J. S. Ng, A. B. Krysa, K. Groom, J. P. R. David, S. Cova, M. J. Robertson, and G. S. Buller, “Design and performance of an InGaAs-InP single-photon avalanche diode detector,” IEEE J. Quantum Electron., vol. 42, no. 4, pp. 397-403, Apr. 2006.
    • [7] Z. Yan, D. R. Hamel, A. K. Heinrichs, J. I. Xudong, and T. Jennewein, “An ultra low noise telecom wavelength free running single photon detector using negative feedback avalanche diode,” Rev. Sci. Instrum., vol. 83, no. 7, pp. 073105-1-073105-15, Jul. 2012.
    • [8] Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett., vol. 91, no. 4, pp. 041114-1-041114-3, Jul. 2007.
    • [9] N. Namekata, S. Adachi, and S. Inoue, “Ultra-low-noise sinusoidally gated avalanche photodiode for high-speed single-photon detection at telecommunication wavelengths,” IEEE Photon. Technol. Lett., vol. 22, no. 8, pp. 529-531, Apr. 15, 2010.
    • [10] R. E. Warburton, M. Itzler, and G. S. Buller, “Free-running, room temperature operation of an InGaAs/InP single-photon avalanche diode,” Appl. Phys. Lett., vol. 94, no. 7, pp. 071116-1-071116-3, Feb. 2009.
    • [11] G. N. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett., vol. 79, no. 6, pp. 705-707, Jun. 2001.
    • [12] W. C. Dash and R. Newman, “Intrinsic optical absorption in singlecrystal germanium and silicon at 77 °K and 300 °K,” Phys. Rev., vol. 99, no. 4, pp. 1151-1155, Aug. 1955.
    • [13] G. S. Buller, S. J. Fancey, J. S. Massa, A. C. Walker, S. Cova, and A. Lacaita, “Time-resolved photoluminescence measurements of InGaAs/InP multiple-quantum-well structures at 1.3 μm wavelengths by use of germanium single-photon avalanche photodiodes,” Appl. Opt., vol. 35, no. 6, pp. 916-921, Feb. 1996.
    • [14] A. Lacaita, P. A. Francese, F. Zappa, and S. Cova, “Single-photon detection beyond 1 μm: Performance of commercially available germanium photodiodes,” Appl. Opt., vol. 33, no. 30, pp. 6902-6918, 1994.
    • [15] J. K. Doylend and A. P. Knights, “The evolution of silicon photonics as an enabling technology for optical interconnection,” Laser Photon. Rev., vol. 6, no. 4, pp. 504-525, Jul. 2012.
    • [16] A. Y. Loudon, P. A. Hiskett, G. S. Buller, R. T. Carline, D. C. Herbert, W. Y. Leong, and J. G. Rarity, “Enhancement of the infrared detection efficiency of silicon photon-counting avalanche photodiodes by use of silicon germanium absorbing layers,” Opt. Lett., vol. 27, no. 4, pp. 219-221, Feb. 2002.
    • [17] V. A. Shah, A. Dobbie, M. Myronov, and D. R. Leadley, “Effect of layer thickness on structural quality of Ge epilayers grown directly on Si(001),” Thin Solid Films, vol. 519, no. 22, pp. 7911-7917, Sep. 2011.
    • [18] Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nature Photon., vol. 3, no. 1, pp. 59-63, Jan. 2009.
    • [19] J. Osmond, G. Isella, D. Chrastina, R. Kaufmann, M. Acciarri, and H. von Känel, “Ultralow dark current Ge/Si(100) photodiodes with low thermal budget,” Appl. Phys. Lett., vol. 94, no. 20, pp. 201106-1-201106-3, May 2009.
    • [20] H. Zang, S. J. Lee, W. Y. Loh, J. Wang, K. T. Chua, M. B. Yu, B. J. Cho, G. Q. Lo, and D. Kwong, “Dark-current suppression in metal-germanium-metal photodetectors through dopant-segregation in NiGe-Schottky barrier,” IEEE Electron Device Lett., vol. 29, no. 2, pp. 161-164, Feb. 2008.
    • [21] Z. Lu, Y. Kang, C. Hu, Q. Zhou, H.-D. Liu, and J. C. Campbell, “Geigermode operation of Ge-on-Si avalanche photodiodes,” IEEE J. Quantum Electron., vol. 47, no. 5, pp. 731-735, May 2011.
    • [22] M. Aminian, A. Sammak, L. Qi, L. K. Nanver, and E. Charbon, “A Ge-on-Si single-photon avalanche diode operating in Geiger mode at infrared wavelengths,” Proc. SPIE, vol. 8375, pp. 83750Q-1-83750Q-10, Jun. 2012.
    • [23] W. Becker, The Bh TCSPC Handbook, 5th ed. Berlin, Germany: Becker & Hickl GmbH, 2010.
    • [24] S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt., vol. 35, no. 12, pp. 1956-1976, Apr. 1996.
    • [25] M. M. Mirza, H. Zhou, P. Velha, X. Li, K. E. Docherty, A. Samarelli, G. Ternent, and D. J. Paul, “Nanofabrication of high aspect ratio (∼50:1) sub-10 nm silicon nanowires using inductively coupled plasma etching,” J. Vac. Sci. Technol. B, Microelectron. Nanometer Struct., vol. 30, no. 6, pp. 06FF02-1-06FF02-8, Sep. 2012.
    • [26] K. Gallacher, P. Velha, D. J. Paul, I. MacLaren, M. Myronov, and D. R. Leadley, “Ohmic contacts to n-type germanium with low specific contact resistivity,” Appl. Phys. Lett., vol. 100, no. 2, pp. 22113-1-22113-3, Jan. 2012.
    • [27] P. A. Hiskett, G. S. Buller, A. Y. Loudon, J. M. Smith, I. Gontijo, A. C. Walker, P. D. Townsend, and M. J. Robertson, “Performance and design of InGaAsyInP photodiodes for single-photon counting at 1.55 μm,” Appl. Opt., vol. 39, no. 36, pp. 6818-6829, Dec. 2000.
    • [28] A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Germanium and InGaAs/InP SPADs for single-photon detection in the near-infrared,” Proc. SPIE, vol. 6771, pp. 67710P-1-67710P-8, Sep. 2007.
    • [29] N. A. DiLello, D. K. Johnstone, and J. L. Hoyt, “Characterization of dark current in Ge-on-Si photodiodes,” J. Appl. Phys., vol. 112, no. 5, pp. 054506-1-054506-8, Sep. 2012.
    • [30] S. Cova, G. Ripamonti, A. Lacaita, and G. Soncini, “Probe-device detecting single carriers: A new method for deep level characterization with nanosecond resolution,” in Proc. IEDM, vol. 31. 1985, pp. 310-313.
    • [31] S. Cova, A. Tosi, A. Gulinatti, F. Zappa, and M. Ghioni, “Avalanche diodes and circuits for infrared photon counting and timing: Retrospect and prospect,” IEEE LEOS Newslett., vol. 20, no. 25, pp. 25-28, Oct. 2006.
    • [32] G. S. Buller, S. Pellegrini, R. E. Warburton, J. S. Ng, L. J. J. Tan, A. Krysa, J. P. R. David, and S. Cova, “Semiconductor avalanche diode detectors for quantum cryptography,” IEEE LEOS Newslett., vol. 20, no. 25, pp. 20-24, Oct. 2006.
    • [33] S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Modern Opt., vol. 51, nos. 9-10, pp. 1267-1288, Jul. 2004.
    • Ryan E. Warburton received the Ph.D. degree in physics in the field of infrared single photon detection from Heriot-Watt University, Edinburgh, U.K., in 2008. He has been a Research Associate with HeriotWatt University since 2008.
    • Giuseppe Intermite received the B.Sc. and M.Sc. degrees in electronic engineering, specializing in microelectronics, from the University Mediterranea of Reggio Calabria, Reggio Calabria, Italy, in 2006 and 2009, respectively. He is involved in design, modeling, and characterization of single-photon detectors.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article