LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Cox, A.; Graham, J.; Martin, P. (2003)
Publisher: Elsevier
Journal: Journal of Algebra
Languages: English
Types: Article
Subjects: QA, Algebra and Number Theory
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [4] P. P. Martin, H. Saleur, On an algebraic approach to higher dimensional statistical mechanics, Comm. Math. Phys. 158 (1993) 155-190.
    • [5] C. K. Fan, R. M. Green, On the affine Temperley Lieb algebras, J. London Math. Soc. (2) 60 (1999) 366-380.
    • [6] V. F. R. Jones, A quotient of the affine Hecke algebra in the Brauer algebra, L'Enseignement Math´ematique 40 (1994) 313-344.
    • [8] J. J. Graham, G. I. Lehrer, The representation theory of affine Temperley-Lieb algebras, L'Enseignement Math´ematique 44 (1998) 173-218.
    • [10] I. N. Bernstein, A. V. Zelevinsky, Induced representations of reductive algebraic groups, Ann. Sci. E´cole Norm. Sup. (4) 10 (1977) 441-472.
    • [20] K. Erdmann, Symmetric groups and quasi-hereditary algebras, in: V. Dlab, L. L. Scott (Eds.), Finite dimensional algebras and related topics, Kluwer, 1994, pp. 123-161.
    • [21] R. Dipper, G. D. James, Representations of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 52 (1986) 20-52.
    • [22] J. Du, B. Parshall, L. Scott, Quantum Weyl reciprocity and tilting modules, Communications in Mathematical Physics 195 (1998) 321-352.
    • [23] P. P. Martin, On Schur-Weyl duality, An Hecke algebras and quantum sl(N ) on ⊗n+1CN , Inter. J. Modern Physics 7 (1B) (1992) 645-673.
    • [24] G. D. James, On the decomposition matrices of the symmetric groups, I, J. Algebra 43 (1976) 42-44.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article