LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Borgoo, Alex; Teale, Andrew M.; Tozer, David J. (2014)
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Subjects:
Scaling relations play an important role in the understanding and development of approximate functionals in density functional theory. Recently, a number of these relationships have been redefined in terms of the Kohn–Sham orbitals [Calderín, Phys. Rev. A: At., Mol., Opt. Phys., 2013, 86, 032510]. For density scaling the author proposed a procedure involving a multiplicative scaling of the Kohn–Sham orbitals whilst keeping their occupation numbers fixed. In the present work, the differences between this scaling with fixed occupation numbers and that of previous studies, where the particle number change implied by the scaling was accommodated through the use of the grand canonical ensemble, are examined. We introduce the terms orbital and ensemble density scaling for these approaches, respectively. The natural ambiguity of the density scaling of the non-interacting kinetic energy functional is examined and the ancillary definitions implicit in each approach are highlighted and compared. As a consequence of these differences, Calderín recovered a homogeneity of degree 1 for the non-interacting kinetic energy functional under orbital scaling, contrasting recent work by the present authors [J. Chem. Phys., 2012, 136, 034101] where the functional was found to be inhomogeneous under ensemble density scaling. Furthermore, we show that the orbital scaling result follows directly from the linearity and the single-particle nature of the kinetic energy operator. The inhomogeneity of the non-interacting kinetic energy functional under ensemble density scaling can be quantified by defining an effective homogeneity. This quantity is shown to recover the homogeneity values for important approximate forms that are exact for limiting cases such as the uniform electron gas and one-electron systems. We argue that the ensemble density scaling provides more insight into the development of new functional forms.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 L. Calder´ın, Phys. Rev. A, 2012, 86, 032510.
    • 2 R. G. Parr and S. Liu, Chem. Phys. Lett., 1997, 276, 164 - 166.
    • 3 S. Liu and R. G. Parr, Chem. Phys. Lett., 1997, 278, 341 - 344.
    • 4 S. Liu and R. G. Parr, Phys. Rev. A, 1996, 53, 2211-2219.
    • 5 M. Levy and J. P. Perdew, Phys. Rev. A, 1985, 32, 2010-2021.
    • 6 A. Borgoo, A. M. Teale and D. J. Tozer, J. Chem. Phys., 2012, 136, 034101.
    • 7 G. K.-L. Chan and N. C. Handy, Phys. Rev. A, 1999, 59, 2670-2679.
    • 8 M. Levy and H. Ou-Yang, Phys. Rev. A, 1990, 42, 651-652.
    • 9 J. P. Perdew, L. A. Constantin, E. Sagvolden and K. Burke, Phys. Rev. Lett., 2006, 97, 223002.
    • 10 S. K. Ghosh and R. G. Parr, J. Chem. Phys., 1985, 82, 3307-3315.
    • 11 A. Borgoo and D. J. Tozer, J. Chem. Theory Comput., 2013, 9, 2250- 2255.
    • 12 S. Laricchia, L. A. Constantin, E. Fabiano and F. Della Sala, J. Chem. Theory Comput., 2013, in press, doi:10.1021/ct400836s.
    • 13 T. Ga´l, Phys. Rev. A, 2000, 62, 044501.
    • 14 E. H. Lieb and W. E. Thirring, Phys. Rev. Lett., 1975, 35, 687-689.
    • 15 R. M. Dreizler and E. K. Gross, Density Functional Theory An Approach to the Quantum Many Body Problem, Springer-Verlag, 1990.
    • 16 E. H. Lieb, Int. J. Quantum Chem., 1983, 24, 243-277.
    • 17 J. P. Perdew, R. G. Parr, M. Levy and J. L. Balduz, Phys. Rev. Lett., 1982, 49, 1691-1694.
    • 18 E. H. Lieb, in Density Functionals for Coulomb Systems, ed. R. Dreizler and J. da Providencia, Plenum Nato ASI Series, 1985, vol. 123, pp. 31- 80.
    • 19 G. K.-L. Chan, J. Chem. Phys., 1999, 110, 4710.
    • 20 A. M. Teale, F. D. Proft and D. J. Tozer, Phys. Chem. Chem. Phys., 2014, in press, doi:10.1039/c3cp54528h.
    • 21 Q. Wu and W. T. Yang, J. Chem. Phys., 2003, 118, 2498-2509.
    • 22 R. A. King and N. C. Handy, Phys. Chem. Chem. Phys., 2000, 2, 5049- 5056.
    • 23 R. G. Parr and W. T. Yang, Density Functional Theory of Atoms and Molecules, Oxford University, New York, 1989.
    • 24 F. E. Zahariev and Y. A. Wang, Phys. Rev. A, 2004, 70, 042503.
    • 25 P. E. Lammert, Int. J. Quantum Chem., 2007, 107, 1943.
    • 26 S. Kvaal, U. Ekstro¨m, A. M. Teale and T. U. Helgaker, 2013, arXiv:1312.3734, year.
    • 27 D. J. Tozer, Phys. Rev. A, 1998, 58, 3524.
    • 28 C. von Weizsa¨cker, Zeitschrift fu¨r Physik A Hadrons and Nuclei, 1935, 96, 431-458.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

  • EC | ABACUS
  • EC | OF-DFT/MCHF

Cite this article