LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bony, Sandrine; Stevens, Bjorn; Frierson, Dargan M. W.; Jakob, Christian; Kageyama, Masa; Pincus, Robert; Shepherd, Theodore G.; Sherwood, Steven C.; Siebesma, A. Pier; Sobel, Adam H.; Watanabe, Masahiro; Webb, Mark J. (2015)
Publisher: Nature Publishing Group
Languages: English
Types: Article
Subjects:
Identifiers:doi:10.1038/NGEO2398
Fundamental puzzles of climate science remain unsolved because of our limited understanding of how clouds, circulation and climate interact. One example is our inability to provide robust assessments of future global and regional climate changes. However, ongoing advances in our capacity to observe, simulate and conceptualize the climate system now make it possible to fill gaps in our knowledge. We argue that progress can be accelerated by focusing research on a handful of important scientific\ud questions that have become tractable as a result of recent advances. We propose four such questions below; they involve understanding the role of cloud feedbacks and convective organization in climate, and the factors that control the position, the strength and the variability of the tropical rain belts and the extratropical storm tracks.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Emanuel, K. The role of water in atmospheric dynamics and climate. In Pearce, R. P. (ed.) Meteorology at the Millennium, 1-14 (Academic Press, London, 2002).
    • 2. Sherwood, S. C., Bony, S. & Dufresne, J.-L. Spread in model climate sensitivity traced to atmospheric convective mixing. Nature 505, 37-42 (2014).
    • 3. IPCC 2013. Summary for Policymakers. In Stocker, T. et al. (eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1-29 (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA., 2013).
    • 4. Shepherd, T. G. Atmospheric circulation as a source of uncertainty in climate change projections. Nature Geoscience 7, 703-708 (2014).
    • 5. Stevens, B. & Bony, S. What are climate models missing? Science 340, 1053-1054 (2013).
    • 6. Bony, S. et al. Carbon Dioxide and Climate: Perspectives on a Scientific Assessment. In Hurrell, J. W. & Asrar, G. (eds.) Monograph on Climate Science for Serving Society: Research, Modelling and Prediction Priorities, 391-413 (Springer Netherlands, Dordrecht, 2013).
    • 7. Boucher, O. et al. Clouds and Aerosols. In Stocker, T. et al. (eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 571-657 (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA., 2013).
    • 8. Sherwood, S. C. et al. Climate Processes: Clouds, Aerosols and Dynamics. In Hurrell, J. W. & Asrar, G. (eds.) Climate Science for Serving Society, 73-103 (Springer Netherlands, Dordrecht, 2013).
    • 9. Held, I. Simplicity amid Complexity. Science 343, 1206-1207 (2014).
    • 10. Held, I. M. & Hou, A. Y. Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci. 37, 515-533 (1980).
    • 11. Emanuel, K. A. The Dependence of Hurricane Intensity on Climate. Nature 326, 483-485 (1987).
    • 12. Hartmann, D. L. & Larson, K. An important constraint on tropical cloud - climate feedback. Geophys. Res. Lett. 29, 1951 (2002).
    • 13. Cooke, R., Wielicki, B. A., Young, D. F. & Mlynczak, M. G. Value of information for climate observing systems. Environ Syst Decis 34, 98-109 (2013).
    • 14. Stevens, B. & Bony, S. Water in the atmosphere. Physics Today 66, 29 (2013).
    • 15. Rieck, M., Nuijens, L. & Stevens, B. Marine Boundary Layer Cloud Feedbacks in a Constant Relative Humidity Atmosphere. J. Atmos. Sci 69, 2538-2550 (2012).
    • 16. Zhang, M. et al. CGILS: Results from the first phase of an international project to understand the physical mechanisms of low cloud feedbacks in single column models. J. Adv. Model. Earth Syst. 5, 826-842 (2013).
    • 17. Zhao, M. An Investigation of the Connections among Convection, Clouds, and Climate Sensitivity in a Global Climate Model. J. Clim. 27, 1845-1862 (2014).
    • 18. Zelinka, M. D., Klein, S. A. & Hartmann, D. L. Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative Kernels. J. Clim. 25, 3715-3735 (2012).
    • 19. Butler, A. H., Thompson, D. W. J. & Heikes, R. The Steady-State Atmospheric Circulation Response to Climate Change-like Thermal Forcings in a Simple General Circulation Model. J. Clim. 23, 3474-3496 (2010).
    • 20. Kang, S. M., Polvani, L. M., Fyfe, J. C. & Sigmond, M. Impact of Polar Ozone Depletion on Subtropical Precipitation. Science 332, 951-954 (2011).
    • 21. Brayshaw, D. J., Hoskins, B. & Blackburn, M. The Basic Ingredients of the North Atlantic Storm Track. Part I: Land-Sea Contrast and Orography. J. Atmos. Sci 66, 2539-2558 (2009).
    • 22. Simpson, I. R., Shaw, T. A. & Seager, R. A Diagnosis of the Seasonally and Longitudinally Varying Midlatitude Circulation Response to Global Warming. J. Atmos. Sci 71, 2489-2515 (2014).
    • 23. Woollings, T. Dynamical influences on European climate: an uncertain future. Phil. Trans. Roy. Soc. A: Mathematical, Physical and Engineering Sciences 368, 3733- 3756 (2010).
    • 24. Grise, K. M. & Polvani, L. M. Southern Hemisphere Cloud-Dynamics Biases in CMIP5 Models and Their Implications for Climate Projections. J. Clim. 27, 6074- 6092 (2014).
    • 25. Ceppi, P., Zelinka, M. D. & Hartmann, D. L. The response of the southern hemispheric eddy-driven jet to future changes in shortwave radiation in cmip5. Geophys. Res. Lett. 41, 3244-3250 (2014).
    • 26. Miyamoto, Y. et al. Deep moist atmospheric convection in a subkilometer global simulation. Geophys. Res. Lett. 40, 4922-4926 (2013).
    • 27. Rivie`re, G., Laˆıne´, A., Lapeyre, G., Salas-Me´lia, D. & Kageyama, M. Links between Rossby Wave Breaking and the North Atlantic Oscillation-Arctic Oscillation in Present-Day and Last Glacial Maximum Climate Simulations. J. Clim. 23, 2987- 3008 (2010).
    • 28. Bartlein, P. J. et al. Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis. Clim. Dynam. 37, 775-802 (2011).
    • 29. Marsham, J. H. et al. The role of moist convection in the West African monsoon system: Insights from continental-scale convection-permitting simulations. Geophys. Res. Lett. 40, 1843-1849 (2013).
    • 30. Biasutti, M. & Giannini, A. Robust Sahel drying in response to late 20th century forcings. Geophys. Res. Lett. 33, L11706 (2006).
    • 31. Kang, S. M., Held, I. M., Frierson, D. M. W. & Zhao, M. The Response of the ITCZ to Extratropical Thermal Forcing: Idealized Slab-Ocean Experiments with a GCM. J. Clim. 21, 3521-3532 (2008).
    • 32. Hwang, Y. T. & Frierson, D. Link between the double-Intertropical Convergence Zone problem and cloud biases over the Southern Ocean. PNAS 110, 4935-4940 (2013).
    • 33. Held, I. M., Delworth, T. L., Lu, J., Findell, K. L. & Knutson, T. R. Simulation of Sahel drought in the 20th and 21st centuries. Proc. Natl Acad. Sci. USA 102, 17891- 17896 (2005).
    • 34. Perez-Sanz, A., Li, G., Gonza´lez-Sampe´riz, P. & Harrison, S. P. Evaluation of modern and mid-Holocene seasonal precipitation of the Mediterranean and northern Africa in the CMIP5 simulations. Clim. Past 10, 551-568 (2014).
    • 35. Donohoe, A., Marshall, J., Ferreira, D. & McGee, D. The Relationship between ITCZ Location and Cross-Equatorial Atmospheric Heat Transport: From the Seasonal Cycle to the Last Glacial Maximum. J. Clim. 26, 3597-3618 (2013).
    • 36. Houze Jr, R. A. Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan 60, 396-408 (1982).
    • 37. Bretherton, C. S., Blossey, P. N. & Khairoutdinov, M. An energy-balance analysis of deep convective self-aggregation above uniform SST. J. Atmos. Sci 62, 4273-4292 (2005).
    • 38. Tobin, I., Bony, S. & Roca, R. Observational Evidence for Relationships between the Degree of Aggregation of Deep Convection, Water Vapor, Surface Fluxes, and Radiation. J. Clim. 25, 6885-6904 (2012).
    • 39. Wing, A. A. & Emanuel, K. A. Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. J. Adv. Model. Earth Syst. 6, 59-74 (2014).
    • 40. Seifert, A. & Heus, T. Large-eddy simulation of organized precipitating trade wind cumulus clouds. Atmos. Chem. Phys. 13, 5631-5645 (2013).
    • 41. Muller, C. J. & Held, I. M. Detailed Investigation of the Self-Aggregation of Convection in Cloud-Resolving Simulations. J. Atmos. Sci 69, 2551-2565 (2012).
    • 42. Neggers, R. A. J., Neelin, J. D. & Stevens, B. Impact Mechanisms of Shallow Cumulus Convection on Tropical Climate Dynamics. J. Clim. 20, 2623-2642 (2007).
    • 43. Jakob, C. Accelerating progress in global atmospheric model development through improved parameterization. Bull. Am. Meteorol. Soc. 91, 869-875 (2010).
    • 44. Lorenz, E. N. The nature of the global circulation of the atmosphere: a present view. The General Circulation of the Atmosphere 3-23 (1969).
    • 45. Slingo, A. & Slingo, J. The response of a general circulation model to cloud longwave radiative forcing. I: Introduction and initial experiments. Q. J. R. Meteorol. Soc. 114, 1027-1062 (1988).
    • 46. Bony, S. & Emanuel, K. A. On the role of moist processes in tropical intraseasonal variability: Cloud-radiation and moisture-convection feedbacks. J. Atmos. Sci 62(8), 2770-2789 (2005).
    • 47. Chagnon, S., Gray, S. L. & Methven, J. Diabatic processes modifying potential vorticity in a North Atlantic cyclone. Q. J. R. Meteorol. Soc. 139, 1270-1282 (2013).
    • 48. Joos, H. & Wernli, H. Influence of microphysical processes on the potential vorticity development in a warm conveyor belt: a case study with the limited area model COSMO. Q. J. R. Meteorol. Soc. 138, 407-418 (2012).
    • 49. Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nature Clim. Change 2, 417-424 (2012).
    • 50. Martin, G. M. et al. Analysis and Reduction of Systematic Errors through a Seamless Approach to Modeling Weather and Climate. J. Clim. 23, 5933-5957 (2010).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article