Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Reilly, M.; Dinsdale, R.; Guwy, A. (2016)
Languages: English
Types: Article
Batch studies are used to benchmark biohydrogen potential (BHP) and biomethane potential (BMP) yields from feed substrates, digestates residues and different process configurations. This study shows that BMP yields using cellulose can be biased positively by not diluting the initial sewage sludge inoculum and the bias is independent of starting inoculum volatile solids (VS) concentration. The carryover of BHP inoculum also increased the BMP yields when using cellulose as a substrate by up to 18.8%. Furthermore it was also observed that the dilution of BMP inoculum with deionised H2O reduced methane yields from cellulose by up to 132 ± 26 N mL-CH4 g-VS−1. Therefore it is proposed that inoculum and standard substrate controls (as used in this study) should be included in methane batch methodologies, particularly when using a pre-fermentation stage such as dark fermentation.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Alzate, M.E., Muñoz, R., Rogalla, F., Fdz-Polanco, F., Pérez-Elvira, S.I., 2012. Biochemical methane potential of microalgae: Influence of substrate to inoculum ratio, biomass concentration and pretreatment. Bioresour. Technol. 123, 488 494. doi:http://dx.doi.org/10.1016/j.biortech.2012.06.113
    • 2. Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J.L., Guwy, A.J., Kalyuzhnyi, S., Jenicek, P., Van Lier, J.B., 2009. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Sci. Technol. 59, 927 934. doi:10.2166/wst.2009.040
    • 3. APHA Standard Methods for the Examination of Water and Wastewater, 17th ed, 1989. . American Public Health Association, Washington DC.
    • 4. Chen, W.-H., Chen, S.-Y., Khanal, S.K., Sung, S., 2006. Kinetic study of biological hydrogen production by anaerobic fermentation. Int. J. Hydrogen Energy 31, 2170 2178. doi:http://dx.doi.org/10.1016/j.ijhydene.2006.02.020
    • 5. Cheng, X.-Y., Liu, C.-Z., 2012. Enhanced coproduction of hydrogen and methane from cornstalks by a three-stage anaerobic fermentation process integrated with alkaline hydrolysis. Bioresour. Technol. 104, 373 379. doi:http://dx.doi.org/10.1016/j.biortech.2011.10.082
    • 6. Cruwys, J.A., Dinsdale, R.M., Hawkes, F.R., Hawkes, D.L., 2002. Development of a static headspace gas chromatographic procedure for the routine analysis of volatile fatty acids in wastewaters. J. Chromatogr. A 945, 195 209. doi:10.1016/S0021- 9673(01)01514-X
    • 7. De la Rubia, M.A., Fernández-Cegrí, V., Raposo, F., Borja, R., 2011. Influence of particle size and chemical composition on the performance and kinetics of anaerobic digestion process of sunflower oil cake in batch mode. Biochem. Eng. J. 58 59, 162 167. doi:http://dx.doi.org/10.1016/j.bej.2011.09.010
    • 8. Dechrugsa, S., Kantachote, D., Chaiprapat, S., 2013. Effects of inoculum to substrate ratio, substrate mix ratio and inoculum source on batch co-digestion of grass and pig manure. Bioresour. Technol. 146, 101 108. doi:http://dx.doi.org/10.1016/j.biortech.2013.07.051
    • 9. Devlin, D.C., Esteves, S.R.R., Dinsdale, R.M., Guwy, A.J., 2011. The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge. Bioresour. Technol. 102, 4076 4082.
    • 10. Eskicioglu, C., Ghorbani, M., 2011. Effect of inoculum/substrate ratio on mesophilic anaerobic digestion of bioethanol plant whole stillage in batch mode. Process Biochem. 46, 1682 1687. doi:http://dx.doi.org/10.1016/j.procbio.2011.04.013
    • 11. Giordano, A., Cantù, C., Spagni, A., 2011. Monitoring the biochemical hydrogen and methane potential of the two-stage dark-fermentative process. Bioresour. Technol. 102, 4474 4479.
    • 12. Giordano, A., Sarli, V., Lavagnolo, M.C., Spagni, A., 2014. Evaluation of aeration pretreatment to prepare an inoculum for the two-stage hydrogen and methane production process. Bioresour. Technol. 166, 211 218. doi:http://dx.doi.org/10.1016/j.biortech.2014.05.019
    • 13. Kaparaju, P., Serrano, M., Thomsen, A.B., Kongjan, P., Angelidaki, I., 2009. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour. Technol. 100, 2562 2568. doi:http://dx.doi.org/10.1016/j.biortech.2008.11.011
    • 14. Kim, M., Liu, C., Noh, J.-W., Yang, Y., Oh, S., Shimizu, K., Lee, D.-Y., Zhang, Z., 2013. Hydrogen and methane production from untreated rice straw and raw sewage sludge under thermophilic anaerobic conditions. Int. J. Hydrogen Energy 38, 8648 8656. doi:http://dx.doi.org/10.1016/j.ijhydene.2013.04.079
    • 15. Kim, M., Yang, Y., Morikawa-Sakura, M.S., Wang, Q., Lee, M. V, Lee, D.-Y., Feng, C., Zhou, Y., Zhang, Z., 2012. Hydrogen production by anaerobic codigestion of rice straw and sewage sludge. Int. J. Hydrogen Energy 37, 3142 3149. doi:http://dx.doi.org/10.1016/j.ijhydene.2011.10.116
    • 16. Lay, J.-J., Li, Y.-Y., Noike, T., 1997. Influences of pH and moisture content on the methane production in high-solids sludge digestion. Water Res. 31, 1518 1524. doi:http://dx.doi.org/10.1016/S0043-1354(96)00413-7
    • 17. Liu, Dawei, Liu, Dapeng, Zeng, R.J., Angelidaki, I., 2006. Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res. 40, 2230 2236.
    • 18. Liu, G., Zhang, R., El-Mashad, H.M., Dong, R., 2009. Effect of feed to inoculum ratios on biogas yields of food and green wastes. Bioresour. Technol. 100, 5103 5108. doi:http://dx.doi.org/10.1016/j.biortech.2009.03.081
    • 19. Liu, Z., Li, Q., Zhang, C., Wang, L., Han, B., Li, B., Zhang, Y., Chen, H., Xing, X.- H., 2014. Effects of operating parameters on hydrogen production from raw wet steam-exploded cornstalk and two-stage fermentation potential for biohythane production. Biochem. Eng. J. 90, 234 238. doi:http://dx.doi.org/10.1016/j.bej.2014.06.013
    • 20. Mamimin, C., Singkhala, A., Kongjan, P., Suraraksa, B., Prasertsan, P., Imai, T., OThong, S., 2015. Two-stage thermophilic fermentation and mesophilic methanogen process for biohythane production from palm oil mill effluent. Int. J. Hydrogen Energy 40, 6319 6328. doi:http://dx.doi.org/10.1016/j.ijhydene.2015.03.068
    • 21. Massanet-Nicolau, J., Dinsdale, R., Guwy, A., Shipley, G., 2013. Use of real time gas production data for more accurate comparison of continuous single-stage and two-stage fermentation. Bioresour. Technol. 129, 561 567. doi:http://dx.doi.org/10.1016/j.biortech.2012.11.102
    • 22. Mu, Y., Wang, G., Yu, H.-Q., 2006. Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures. Enzyme Microb. Technol. 38, 905 913. doi:http://dx.doi.org/10.1016/j.enzmictec.2005.08.016
    • 23. Pakarinen, O.M., Kaparaju, P.L.N., Rintala, J.A., 2011. Hydrogen and methane yields of untreated, water-extracted and acid (HCl) treated maize in one- and twostage batch assays. Int. J. Hydrogen Energy 36, 14401 14407. doi:http://dx.doi.org/10.1016/j.ijhydene.2011.08.028
    • 24. Pakarinen, O.M., Tahti, H.P., Rintala, J.A., 2009. One-stage H2 and CH4 and twostage H2 + CH4 production from grass silage and from solid and liquid fractions of NaOH pre-treated grass silage. Biomass Bioenergy 33, 1419 1427.
    • 25. Patterson, T., Esteves, S., Dinsdale, R., Guwy, A., Maddy, J., 2013. Life cycle assessment of biohydrogen and biomethane production and utilisation as a vehicle fuel. Bioresour. Technol. 131, 235 245. doi:http://dx.doi.org/10.1016/j.biortech.2012.12.109
    • 26. Raposo, F., Borja, R., Martín, M.A., Martín, A., de la Rubia, M.A., Rincón, B., 2009. Influence of inoculum substrate ratio on the anaerobic digestion of sunflower oil cake in batch mode: Process stability and kinetic evaluation. Chem. Eng. J. 149, 70 77. doi:http://dx.doi.org/10.1016/j.cej.2008.10.001
    • 27. Reilly, M., Dinsdale, R., Guwy, A., 2014. Mesophilic biohydrogen production from calcium hydroxide treated wheat straw. Int. J. Hydrogen Energy 39, 16891 16901. doi:http://dx.doi.org/10.1016/j.ijhydene.2014.08.069
    • 28. Reilly, M., Dinsdale, R., Guwy, A., 2015. Enhanced biomethane potential from wheat straw by low temperature alkaline calcium hydroxide pre-treatment. Bioresour. Technol. 189, 258 265. doi:http://dx.doi.org/10.1016/j.biortech.2015.03.150
    • 29. Schievano, A., Tenca, A., Lonati, S., Manzini, E., Adani, F., 2014. Can two-stage instead of one-stage anaerobic digestion really increase energy recovery from biomass? Appl. Energy 124, 335 342. doi:http://dx.doi.org/10.1016/j.apenergy.2014.03.024
    • 30. Wan, C., Zhou, Q., Fu, G., Li, Y., 2011. Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease. Waste Manag. 31, 1752 1758. doi:http://dx.doi.org/10.1016/j.wasman.2011.03.025
    • 31. Wang, Z., Shao, S., Zhang, C., Lu, D., Ma, H., Ren, X., 2015. Pretreatment of vinegar residue and anaerobic sludge for enhanced hydrogen and methane
    • 32. Xie, B., Cheng, J., Zhou, J., Song, W., Liu, J., Cen, K., 2008. Production of hydrogen and methane from potatoes by two-phase anaerobic fermentation. Bioresour. Technol. 99, 5942 5946. doi:http://dx.doi.org/10.1016/j.biortech.2007.10.048
    • 33. Yang, Z., Guo, R., Xu, X., Fan, X., Luo, S., 2011. Hydrogen and methane production from lipid-extracted microalgal biomass residues. Int. J. Hydrogen Energy 36, 3465 3470. doi:http://dx.doi.org/10.1016/j.ijhydene.2010.12.018
    • 34. Zhang, Y., Liu, G., Shen, J., 2005. Hydrogen production in batch culture of mixed bacteria with sucrose under different iron concentrations. Int. J. Hydrogen Energy 30, 855 860. doi:http://dx.doi.org/10.1016/j.ijhydene.2004.05.009
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article