LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hayes, Sally; Boote, Craig; Tuft, Stephen J.; Quantock, Andrew James; Meek, Keith Michael Andrew (2007)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: RE

Classified by OpenAIRE into

mesheuropmc: sense organs, genetic structures, eye diseases
In keratoconus, the cornea becomes progressively ectactic resulting in severe visual impairment. Here, we use a combination of videokeratography and synchrotron X-ray diffraction to investigate the relationship between corneal shape and thickness, and the distribution and predominant orientation of stromal fibrillar collagen in five keratoconus corneas. In all but the least advanced case, the thinning and ectasia measured in vivo using corneal videokeratography was accompanied by corresponding changes in the relative distribution and orientation of stromal collagen in the excised corneal buttons. Although the most severe case of keratoconus possessed the most pronounced stromal collagen alterations, and only a minor disruption to stromal collagen arrangement was seen in the least advanced case, a variability in the extent of stromal collagen alteration was seen between these clinical extremes. The observed abnormalities in collagen distribution and orientation are consistent with a mechanism of keratoconus progression that involves inter-fibrillar or inter-lamellar slippage causing a redistribution of tissue within the cornea.

Share - Bookmark

Funded by projects

Cite this article