Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hayes, Sally; Boote, Craig; Tuft, Stephen J.; Quantock, Andrew James; Meek, Keith Michael Andrew (2007)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: RE

Classified by OpenAIRE into

mesheuropmc: sense organs, genetic structures, eye diseases
In keratoconus, the cornea becomes progressively ectactic resulting in severe visual impairment. Here, we use a combination of videokeratography and synchrotron X-ray diffraction to investigate the relationship between corneal shape and thickness, and the distribution and predominant orientation of stromal fibrillar collagen in five keratoconus corneas. In all but the least advanced case, the thinning and ectasia measured in vivo using corneal videokeratography was accompanied by corresponding changes in the relative distribution and orientation of stromal collagen in the excised corneal buttons. Although the most severe case of keratoconus possessed the most pronounced stromal collagen alterations, and only a minor disruption to stromal collagen arrangement was seen in the least advanced case, a variability in the extent of stromal collagen alteration was seen between these clinical extremes. The observed abnormalities in collagen distribution and orientation are consistent with a mechanism of keratoconus progression that involves inter-fibrillar or inter-lamellar slippage causing a redistribution of tissue within the cornea.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Aghamohamadzadeh, H., Newton, R.H., Meek, K.M., 2004. X-ray scattering used to map the preferred collagen orientation in the human cornea and limbus. Structure 12, 249e256.
    • Andreassen, T., Simonsen, A., Oxlund, H., 1980. Biomechanical properties of keratoconus and normal cornea. Experimental Eye Research 31, 435e441.
    • Benedek, G.B., 1971. Theory of transparency of the eye. Applied Optics 10, 459e472.
    • Boote, C., Hayes, S., Abahussin, M., Meek, K., 2006. Mapping collagen organisation in the human cornea: left and right eyes are structurally distinct. Investigative Ophthalmology and Visual Science 47, 901e908.
    • Borcherding, M.S., Balccik, L.J., Sittig, R.A., Bizzel, J.W., Breen, M., Weinstein, H.G., 1975. Proteoglycans and collagen fibre organisation in human corneoscleral tissue. Experimental Eye Research 21, 59e70.
    • Brookes, N.H., Loh, I.P., Clover, G.M., Poole, C.A., Sherwin, T., 2003. Involvement of corneal nerves in the progression of keratoconus. Experimental Eye Research 77, 515e524.
    • Buxton, J.N., Keates, R.H., Hoefle, F.B., 1984. The contact lens correction of keratoconus. In: Dabezies, O.H.J. (Ed.), Contact lenses: The CLAO Guide to Basic Science and Clinical Practice. Grune and Stratton, Orlando, p. 55.5.
    • Chakravarti, S., Magnuson, T., Lass, J.H., Jespen, K.L., LaMantia, C., Carroll, H., 1998. Lumican regulates collagen fibril assembly: skin fragility and corneal opacity in the absence of lumican. The Journal of Cell Biology 141, 1277e1286.
    • Connon, C.J., Meek, K., 2003. Organization of corneal collagen fibrils during the healing of trephined wounds in rabbits. Wound Repair and Regeneration 11, 71e78.
    • Daxer, A., Fratzl, P., 1997. Collagen fibril orientation in the human corneal stroma and its implications in keratoconus. Investigative Ophthalmology and Visual Science 38, 121e129.
    • Fini, M.E., Yue, B.Y., Sugar, J., 1992. Collagenolytic/gelatinolytic metalloproteinases in normal and keratoconus corneas. Current Eye Research 11, 849e862.
    • Fratzl, P., Daxer, A., 1993. Structural transformation of collagen fibrils in the corneal stroma during drying: an X-ray scattering study. Biophysical Journal 64, 1210e1214.
    • Fullwood, N.J., Meek, K.M., 1994. An ultrastructural, time-resolved study of freezing in the corneal stroma. Journal of Molecular Biology 236, 749e758.
    • Fullwood, N.J., Meek, K.M., Malik, N.S., Tuft, S.J., 1990. A comparison of proteoglycan arrangement in normal and keratoconus human corneas. Biochemical Society Transactions 18, 961e962.
    • Fullwood, N.J., Tuft, S.J., Malik, N.S., Meek, K.M., Ridgway, A.E.A., Harrison, R.J., 1992. Synchrotron X-ray diffraction studies of keratoconus corneal stroma. Investigative Ophthalmology and Visual Science 33, 1734e1741.
    • Funderburgh, J.L., Panjwani, N., Conrad, G.W., Baum, J., 1989. Altered keratan sulphate epitopes in keratoconus. Investigative Ophthalmology and Visual Science 30, 2278e2281.
    • Kao, W.W.Y., Liu, C.Y., 2003. Roles of lumican and keratocan on corneal transparency. Glycoconjugate Journal 19, 275e285.
    • Kenney, M., Chwa, M., Escobar, M., Brown, D., 1989. Altered gelatinolytic activity by keratoconus corneal cells. Biochemical and Biophysical Research Communications 161, 353e357.
    • Kenney, M., Chwa, M., Opbroek, A.J., Brown, D.J., 1994. Increased gelatinolytic activity in keratoconus cultures. A correlation to an altered matrix metalloproteinase-2/tissue inhibitor of metalloproteinase ratio. Cornea 13, 114e124.
    • Kenney, M.C., Brown, D.J., 2003. The cascade hypothesis of keratoconus. Contact Lens and Anterior Eye 26, 139e146.
    • Kim, W.J., Rabinowitz, Y.S., Meisler, D.M., Wilson, S.E., 1999. Keratocyte apoptosis associated with keratoconus. Experimental Eye Research 69, 475e481.
    • Klintworth, G.K., 1994. Degenerations, depositions and miscellaneous reactions of the ocular anterior segment. In: Klintworth, G.K., Garner, A. (Eds.), Pathobiology of Ocular Disease: A Dynamic Approach, second ed. Marcel Dekker, New York.
    • Klug, H., Alexander, L.E., 1974. X-ray Diffraction Procedures for Crystalline and Amorphous Materials. New York.
    • Komai, Y., Ushiki, T., 1991. The three-dimensional organisation of collagen fibrils in the human cornea and sclera. Investigative Ophthalmology and Visual Science 32, 2244e2258.
    • Malik, N.S., Moss, S.J., Ahmed, N., Furth, A.J., Wall, R.S., Meek, K.M., 1992. Aging of the human corneal stroma e structural and biochemical changes. Biochimica Et Biophysica Acta 1138, 222e228.
    • Maurice, D.M., 1957. The structure and transparency of the cornea. Journal of Physiology 136, 263e286.
    • Meek, K., Blamires, T., Elliot, G., Gyi, T.J., Nave, C., 1987. The organisation of collagen fibrils in the human corneal stroma: a synchrotron X-ray diffraction study. Current Eye Research 6, 841e846.
    • Meek, K.M., Fullwood, N.J., Cooke, P.H., Elliott, G.F., Maurice, D.M., Quantock, A.J., Wall, R.S., Worthington, C.R., 1991. Synchrotron X-raydiffraction studies of the cornea, with implications for stromal hydration. Biophysical Journal 60, 467e474.
    • Meek, K.M., Leonard, D.W., Connon, C.J., Dennis, S., Khan, S., 2003. Transparency, swelling and scarring in the corneal stroma. Eye 17, 927e936.
    • Meek, K.M., Tuft, S.J., Huang, Y., Gill, P.S., Hayes, S., Newton, R.H., Bron, A.J., 2005. Changes in collagen orientation and distribution in keratoconus corneas. Investigative Ophthalmology and Visual Science 46, 1948e1956.
    • Muller, L.J., Pels, E., Vrensen, G.F.J.M., 2001. The specific architecture of the anterior stroma accounts for maintenance of corneal curvature. British Journal of Ophthalmology 85, 437e443.
    • Nash, I., Greene, P., Foster, S., 1982. Comparison of mechanical properties of keratoconus and normal cornea. Experimental Eye Research 35, 413e423.
    • Newton, R.H., Meek, K.M., 1998. Circumcorneal annulus of collagen fibrils in the human limbus. Investigative Ophthalmology and Visual Science 39, 1125e1134.
    • Polack, F.M., 1976. Contributions of electron microscopy to the study of corneal pathology. Survey of Ophthalmology 20, 375e414.
    • Quantock, A.J., Meek, K.M., Chakravarti, S., 2001. An X-ray diffraction investigation of corneal structure in lumican-deficient mice. Investigative Ophthalmology and Visual Science 42, 1750e1756.
    • Quantock, A.J., Meek, K.M., Ridgway, A.E.A., Bron, A.J., Thonar, E.J.M.A., 1990. Macular corneal dystrophy e reduction in both corneal thickness and collagen interfibrillar spacing. Current Eye Research 9, 393e398.
    • Radner, W., Mallinger, R., 2002. Interlacing of collagen lamellae in the midstroma of the human cornea. Cornea 21, 598e601.
    • Radner, W., Zehetmayer, M., Aufreiter, R., Mallinger, R., 1998a. Interlacing and cross-angle distribution of collagen lamellae in the human cornea. Cornea 17, 537e543.
    • Radner, W., Zehetmayer, M., Skorpik, C., Mallinger, R., 1998b. Altered organization of collagen in the apex of keratoconus corneas. Ophthalmic Research 30, 327e332.
    • Rehany, U., Lahav, M., Shoshan, S., 1982. Collagenolytic activity in keratoconus. Annals of Ophthalmology 14, 751e754.
    • Sawaguchi, S., Fukuchi, T., Abe, H., Kaiya, T., Sugar, J., Yue, B.Y., 1998. Three dimensional electron microscopic study of keratoconus. Archives of Ophthalmology 116, 62e98.
    • Sawaguchi, S., Twining, S.S., Yue, B.Y., Wilson, P.M., Sugar, J., Chan, S.K., 1990. Alpha-1 proteinase inhibitor levels in keratoconus. Experimental Eye Research 50, 549e554.
    • Sawaguchi, S., Twining, S.S., Yue, B.Y., Chang, S.H., Zhou, X., Loushin, G., Sugar, J., Feder, R.S., 1994. Alpha-2-Macro-globulin levels in normal and keratoconus corneas. Investigative Ophthalmology and Visual Science 35, 4008e4014.
    • Sawaguchi, S., Yue, B.Y., Sugar, J., Gilboy, J.E., 1989. Lysosomal enzyme abnormalities in keratoconus. Archives of Ophthalmology 107, 1507e 1510.
    • Sherwin, T., Brookes, N.H., Loh, I.P., Poole, C.A., Clover, G.M., 2002. Cellular incursion into Bowman's membrane in the peripheral cone of the keratoconic cornea. Experimental Eye Research 74, 473e482.
    • Smolek, M.K., McCarey, B.E., 1990. Interlamellar adhesive strength in human eyebank corneas. Investigative Ophthalmology and Visual Science 31, 1087e1095.
    • Somodi, S., Hahnel, C., Slowik, C., Richter, A., Weiss, D.G., Guthoff, R.F., 1996. Confocal in vivo microscopy and confocal laser-scanning fluorescence microscopy in keratoconus. German Journal of Ophthalmology 5, 518e525.
    • Teng, C.C., 1963. Electron microscope study of the pathology of keratoconus: part 1. American Journal of Ophthalmology 55, 18e47.
    • Wollensak, G., Sporl, E., Seiler, T., 2003. Behandlung von Keratokonus durch kollagenvernetzung. Ophthalmologe 100, 44e49.
    • Yue, B.Y., Sugar, J., Benveniste, K., 1984. Heterogenity in keratoconus: possible biochemical basis. Proceedings of the Society for Experimental Biology and Medicine 175, 336e341.
    • Zhou, L.L., Sawaguchi, S., Twining, S.S., Sugar, J., Feder, R.S., Yue, B.Y., 1998. Expression of degradative enzymes and protease inhibitors in corneas with keratoconus. Investigative Ophthalmology and Visual Science 39, 1117e1124.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

Cite this article