Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Al-Hassan, L.; El Mehallawy, H.; Amyes, S.G.B. (2013)
Publisher: Elsevier BV
Journal: Clinical Microbiology and Infection
Languages: English
Types: Article
Subjects: Infectious Diseases, Microbiology (medical)

Classified by OpenAIRE into

mesheuropmc: biochemical phenomena, metabolism, and nutrition, polycyclic compounds, bacteria
Acinetobacter baumannii is an important nosocomial pathogen, commonly causing infections in immunocompromised patients. It is increasingly reported as a multidrug-resistant organism, which is alarming because of its capability to resist all available classes of antibiotics including carbapenems. The aim of this study was to examine the genetic and epidemiological diversity of A. baumannii isolates from paediatric cancer patients in Egypt, by sequencing the intrinsic blaOXA -51-like gene, genotyping by pulsed-field gel electrophoresis and multi-locus sequence typing in addition to identifying the carbapenem-resistance mechanism. Results showed a large diversity within the isolates, with eight different blaOXA -51-like genes, seven novel sequence types and only 28% similarity by pulsed-field gel electrophoresis. All three acquired class-D carbapenemases (OXA-23, OXA-40 and OXA-58) were also identified among these strains correlating with resistance to carbapenems. In addition, we report the first identification of ISAba2 upstream of blaOXA -51-like contributing to high-level carbapenem resistance. This indicates the presence of several clones of A. baumannii in the hospitals and illustrates the large genetic and epidemiological diversity found in Egyptian strains.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok