LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bartlett, JW; Frost, C; Mattsson, N; Skillbäck, T; Blennow, K; Zetterberg, H; Schott, JM (2012)
Publisher: Future Medicine
Languages: English
Types: Article
Subjects:
Identifiers:doi:10.2217/bmm.12.49
: New proposed criteria for the clinical diagnosis of Alzheimer's disease increasingly incorporate biomarkers, most of which are normally measured on a continuous scale. Operationalizing such criteria thus requires continuous biomarkers to be dichotomized, which in turns requires the selection of a cut-point at which to dichotomize. In this article, we review the statistical principles underlying the choice of cut-points, describe some of the most commonly adopted statistical approaches used to estimate cut-points, highlight potential pitfalls in some of the approaches and characterize in what sense the estimated cut-point from each approach is optimal. We also emphasize that how a cut-point is selected must be made in reference to how the resulting dichotomized biomarker is to be used, and in particular what actions will follow from a positive or negative test result.

Share - Bookmark

Cite this article