LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Polansky, J; Wang, M (2017)
Publisher: Elsevier
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Fluid Dynamics
Collecting of very large amount of data from experimental measurement is a common practice in almost every scientific domains. There is a great need to have specific techniques capable of extracting synthetic information, which is essential for understanding and modelling the specific phenomena. The Proper Orthogonal Decomposition (POD) is one of the most powerful data analysis methods for multivariate and nonlinear phenomena. Generally, POD is a procedure that takes a given collection of input experimental or numerical data and creates an orthogonal basis constituted by functions estimated as the solutions of an integral eigenvalue problem known as a Fredholm equation. This paper proposes a novel approach by utilising POD to identify flow structure in horizontal pipeline, specially, for slag, plug and wavy stratified air-water flow regimes, , in which POD technique extends the current evaluation procedure of electrical impedance tomography [31]. This capability is extended by the implementation of POD as an identifier for typical horizontal two phase flow regimes. Direct POD method introduced by Lumley and Snapshot POD method introduced by Sirovich are applied The POD snapshot matrices are reconstructed from electrical tomography measurement under specific flow conditions. It is expected that this study may provide new knowledge on two phase flow dynamics in a horizontal pipeline and useful information for further prediction of multiphase flow regime.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article