Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Kidder, S.; Avouac, J.-P.; Chan, Y.-C. (2013)
Publisher: European Geosciences Union
Types: Article
Subjects: Petrology, QE500-639.5, DOAJ:Earth and Environmental Sciences, DOAJ:Earth Sciences, QE1-996.5, Mineralogy, Geology, Stratigraphy, Q, sub-02, Dynamic and structural geology, QE351-399.2, QE640-699, Science, QE420-499
The accuracy, reliability and best practises of Ti-in-quartz thermobarometry (TitaniQ) in greenschist facies rocks have not been established. To address these issues, we measured Ti concentrations in rutile-bearing samples of moderately deformed, partially recrystallized quartzite and vein quartz from the Hsüehshan range, Taiwan. The spread of Ti concentrations of recrystallized grains in quartzite correlates with recrystallized grain size. Recrystallized quartz (grain size ~100–200 μm) that formed during early deformation within the biotite stability field shows a marked increase in intermediate Ti-concentration grains (~1–10 ppm) relative to detrital porphyroclasts (Ti ~0.1–200 ppm). Fine recrystallized quartz (~5% of the samples by area, grain size ~10–20 μm) has a further restricted Ti concentration peaking at 0.8–2 ppm. This trend suggests equilibration of Ti in recrystallized quartz with a matrix phase during deformation and cooling. Unlike previously documented examples, Ti concentration in the quartzite is inversely correlated with blue cathodoluminescence. Deformation was associated with a minimum grain boundary diffusivity of Ti on the order of 10−22m2 s−1. Vein emplacement and quartzite recrystallization are independently shown to have occurred at 250–350 °C and 300–410 °C, respectively, with lithostatic pressure of 3–4 kbar (assuming a geothermal gradient of 25° km−1), and with hydrostatic fluid pressure. Estimates of the accuracy of TitaniQ at these conditions depend on whether lithostatic or fluid pressure is used in the TitaniQ calibration. Using lithostatic pressure and these temperatures, the Thomas et al. (2010) calibration yields Ti concentrations within error of concentrations measured by SIMS. If fluid pressure is instead used, predicted temperatures are ~30–40 °C too low. TitaniQ has potential to yield accurate PT information for vein emplacement and dynamic recrystallization of quartz at temperatures as low as ~250 °C, however clarification of the relevant pressure term and further tests in rutile-present rocks are warranted.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Behr, W. M., Thomas, J., and Hervig, R.: Calibrating Ti concentrations in quartz on the SIMS using NIST silicate glasses with applications to the TitaniQ geothermobarometer, Am. Mineral., 96, 1100-1106, doi:10.2138/am.2011.3702, 2010.
    • Behr, W. M. and Platt, J. P.: A naturally constrained stress profile through the middle crust in an extensional terrane, Earth Planet. Sci. Lett., 303, 181-192, doi:10.1016/J.Epsl.2010.11.044, 2011.
    • Beyssac, O., Bollinger, L., Avouac, J. P., and Goffe´, B.: Thermal metamorphism in the Lesser Himalaya of Nepal determined from Raman spectroscopy of carbonaceous material, Earth Planet. Sci. Lett., 225, 233-241, 2004.
    • Beyssac, O., Simoes, M., Avouac, J. P., Farley, K. A., Chen, Y.-G., Chan, Y.-C., and Goffe´, B.: Late Cenozoic metamorphic evolution and exhumation of Taiwan, Tectonics, 26, 1-32, 2007.
    • Bucher, K. and Grapes, R.: Petrogenesis of Metamorphic Rocks, 8 Edn., Springer-Verlag, 428 pp., 2011.
    • Chen, C. T., Chan, Y. C., Lu, C. Y., Simoes, M., and Beyssac, O.: Nappe structure revealed by thermal constraints in the Taiwan metamorphic belt, Terra Nova, 23, 85-91, doi:10.1111/J.1365- 3121.2011.00987.X, 2011.
    • Cherniak, D. J., Watson, E. B., and Wark, D. A.: Ti diffusion in quartz, Chem. Geol., 236, 65-74, doi:10.1016/J.Chemgeo.2006.09.001, 2007.
    • Clark, M. B., Fisher, D. M., and Lu, C.-Y.: Strain Variations in the Eocene and older rocks exposed along the Central and Southern Cross-Island Highways, Taiwan, Acta Geologica Taiwanica Science Reports of the National Taiwan University, 30, 1-10, 1992.
    • Clark, M. B., Fisher, D. M., Lu, C.-Y., and Chen, C.-H.: Kinematic analyses of the Hsu¨ehshan range, Taiwan: A large-scale pop-up structure, Tectonics, 12, 205-217, 1993.
    • De Laeter, J. R., Bohlke, J. K., De Bievre, P., Hidaka, H., Peiser, H. S., Rosman, K. J. R., and Taylor, P. D. P.: Atomic weights of the elements: Review 2000 - (IUPAC technical report), Pure Appl. Chem., 75, 683-800, 2003.
    • Dresen, G., Duyster, J., Sto¨ckhert, B., Wirth, R., and Zulauf, G.: Quartz dislocation microstructure between 7000 m and 9100 m depth from the Continental Deep Drilling Program KTB, J. Geophys. Res., 102, 18443-18452, 1997.
    • Dunlap, W., Hirth, G., and Teyssier, C.: Thermomechanical evolution of a ductile duplex, Tectonics, 16, 983-1000, 1997.
    • Fisher, D. M., Lu, C.-Y., and Chu, H. T.: Taiwan Slate Belt: Insights into the ductile interior of an arc-continent collision, in: Geology and Geophysics of an Arc-Continent Collision, Taiwan, edited by: Byrne, T. and Liu, C. S., Geological Society of America Special Paper 358, Boulder, Colorado, 93-106, 2002.
    • Grujic, D., Stipp, M., and Wooden, J. L.: Thermometry of quartz mylonites: Importance of dynamic recrystallization on Ti-in-quartz reequilibration, Geochem. Geophys. Geosyst., 12, Q06012, doi:10.1029/2010GC003368, 2011.
    • Hippertt, J.: Grain boundary microstructures in micaceous quartzite: significance for fluid movement and deformation processes in low metamorphic grade shear zones, The Journal of Geology, 102, 331-348, 1994.
    • Hirth, G. and Tullis, J.: Dislocation creep regimes in quartz aggregates, J. Struct. Geol., 14, 145-159, 1992.
    • Hirth, G., Teyssier, C., and Dunlap, W.: An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks, Int. J. Earth Sci. (Geol Rundsch), 90, 77- 87, 2001.
    • Ho, C. S.: A synthesis of the geologic evolution of Taiwan, Tectonophysics, 125, 1-16, 1986.
    • Ho, C. S.: An introduction to the geology of Taiwan: explanatory text of the geologic map of Taiwan, 2 Edn., Central Geological Survey, Ministry of Economic Affairs, Taipei, Taiwan, Republic of China, 192 pp., 1988.
    • Huang, R. and Aude´tat, A.: The titanium-in-quartz (TitaniQ) thermobarometer: A critical examination and re-calibration, Geochim. Cosmochim. Ac., 84, 75-89, doi:10.1016/j.gca.2012.01.009, 2012.
    • Jochum, K., Nohl, U., Herwig, K., Lammel, E., Stoll, B., and Hofmann, A.: GeoReM: A new geochemical database for reference materials and isotopic standards, Geostandards Newsletters, 22, 7-13, 2005.
    • Kawasaki, T. and Osanai, Y.: Empirical thermometer of TiO2 in quartz for ultrahigh-temperature granulites of East Antarctica, Geological Society, London, Special Publications, 308, 419-430, doi:10.1144/sp308.21, 2008.
    • Kidder, S., Avouac, J. P., and Chan, Y. C.: Constraints from rocks in the Taiwan orogen on crustal stress levels and rheology, J. Geophys. Res., 117, B09408, doi:10.1029/2012JB009303, 2012.
    • Kohlstedt, D. L., Evans, B., and Mackwell, S. J.: Strength of the lithosphere-constraints imposed by laboratory experiments, J. Geophys. Res.-Sol. Ea., 100, 17587-17602, 1995.
    • Kohn, M. J. and Northrup, C. J.: Taking mylonites' temperatures, Geology, 37, 47-50, doi:10.1130/G25081A.1, 2009.
    • Ku¨ster, M. and Sto¨ckhert, B.: High differential stress and sublithostatic pore fluid pressure in the ductile regime - microstructural evidence for short-term post-seismic creep in the Sesia Zone, Western Alps, Tectonophysics, 1998, 263-277, 1998.
    • Lin, A. T., Watts, A. B., and Hesselbo, S. P.: Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region, Basin Research, 15, 453-478, doi:10.1046/j.1365- 2117.2003.00215.x, 2003.
    • Liu, T. K., Hsieh, S., Chen, Y. G., and Chen, W. S.: Thermokinematic evolution of the Taiwan oblique-collision mountain belt as revealed by zircon fission track dating, Earth Planet. Sci. Lett., 186, 45-56, 2001.
    • Lu, C. Y., Lee, J. C., and Lee, J. F.: Extensional and compressional tectonics in central Taiwan, in: Neotectonics and Resources, edited by: Cosgrove, J., and Jones, M., Belhaven Press, London and New York, 85-92, 1991.
    • Lu, C. Y.: The development of the vein system in central Taiwan: a case study of the section from Kukua to Tekee along the Central Cross Island Highway, J. Geol. Soc., 35, 77-94, 1992.
    • Lu, C. Y., Chu, H. T., and Lee, J. C.: Structural evolution in the Hsu¨ehshan range Hsu¨ehshan range, Taiwan, J. Geol. Soc., 40, 261-279, 1997.
    • Mancktelow, N. S. and Pennacchioni, G.: The influence of grain boundary fluids on the microstructure of quartz-feldspar mylonites, J. Struct. Geol., 26, 47-69, doi:10.1016/s0191- 8141(03)00081-6, 2004.
    • Menegon, L., Nasipuri, P., Stu¨nitz, H., Behrens, H., and Ravna, E.: Dry and strong quartz during deformation of the lower crust in the presence of melt, J. Geophys. Res., 116, B10410, doi:10.1029/2011jb008371, 2011.
    • Muto, J., Nagahama, H., and Hashimoto, T.: Water distribution in dynamically recrystallized quartz grains: cathodoluminescence and micro-infrared spectroscopic mapping, in: High-Strain Zones: Structure and Physical Properties, edited by: Bruhn, D. and Burlini, L., Geol. Soc., London, 397-407, 2005.
    • Pennacchioni, G., Menegon, L., Leiss, B., Nestola, F., and Bromiley, G.: Development of crystallographic preferred orientation and microstructure during plastic deformation of natural coarsegrained quartz veins, J. Geophys. Res.-Sol. Ea., 115, B12405, doi:10.1029/2010jb007674, 2010.
    • Peterman, E. M. and Grove, M.: Growth conditions of symplectic muscovite plus quartz: Implications for quantifying retrograde metamorphism in exhumed magmatic arcs, Geology, 38, 1071- 1074, doi:10.1130/G31449.1, 2010.
    • Raimondo, T., Clark, C., Hand, M., and Faure, K.: Assessing the geochemical and tectonic impacts of fluid-rock interaction in mid-crustal shear zones: a case study from the intracontinental Alice Springs Orogen, Central Australia, J. Metamorphic Geol., 29, 821-850, doi:10.1111/j.1525-1314.2011.00944.x, 2011.
    • Rasmussen, B., Fletcher, I. R., Muhling, J. R., Gregory, C. J., and Wilde, S. A.: Metamorphic replacement of mineral inclusions in detrital zircon from Jack Hills, Australia: Implications for the Hadean Earth, Geology, 39, 1143-1146, doi:10.1130/g32554.1, 2011.
    • Rusk, B. G., Reed, M., H., Dilles, J. H., and Kent, A. J. R.: Intensity of quartz cathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana, Am. Mineral., 91, 1300-1312, 2006.
    • Rusk, B. G., Lowers, H. A., and Reed, M., H.: Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and insights into vein formation, Geology, 36, 547-550, 2008.
    • Rusk, B. G., Koenig, A., and Lowers, H. A.: Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation-inductively coupled plasma-mass spectrometry, Am. Mineral., 96, 703-708, 2011.
    • Sella, G. F., Dixon, T. H., and Mao, A. L.: REVEL: A model for recent plate velocities from space geodesy, J. Geophys. Res.-Sol. Ea., 107, 2081, doi:10.1029/2000jb000033, 2002.
    • Simoes, M. and Avouac, J. P.: Investigating the kinematics of mountain building in Taiwan from the spatiotemporal evolution of the foreland basin and western foothills, J. Geophys. Res., 111, 1- 25, 2006.
    • Simoes, M., Avouac, J. P., Beyssac, O., Goffe´, B., Farley, K. A., and Chen, Y.-G.: Mountain building in Taiwan: A thermokinematic model, J. Geophys. Res., 112, 1-25, 2007.
    • Spear, F. S., and Wark, D. A.: Cathodoluminescence imaging and titanium thermometry in metamorphic quartz, J. Metamorphic Geol., 27, 187-205, 2009.
    • Stipp, M., Stu¨ nitz, H., Heilbronner, R., and Schmid, S. M.: The eastern Tonale fault zone: a “natural laboratory” for crystal plastic deformation of quartz over a temperature range from 250 to 700 ◦C, J. Struct. Geol., 24, 1861-1884, 2002a.
    • Stipp, M., Stu¨ nitz, H., Heilbronner, R., and Schmid, S. M.: Dynamic recrystallization of quartz: correlation between natural and experimental conditions, Geol. Soc. Spec. Publ., 200, 171-190, 2002b.
    • Stipp, M. and Tullis, J.: The recrystallized grain size piezometer for quartz, Geophys. Res. Lett., 30, 2088, doi:10.1029/2003GL018444, 2003.
    • Stipp, M., Tullis, J., Scherwath, M., and Behrmann, J. H.: A new perspective on paleopiezometry: Dynamically recrystallized grain size distributions indicate mechanism changes, Geology, 38, 759-762, doi:10.1130/G31162.1, 2010.
    • Sto¨ ckhert, B., Brix, M. R., Kleinschrodt, R., Hurford, A. J., and Wirth, R.: Thermochronometry and microstructures of quartzcomparison with experimental flow laws and predictions on the temperature of the brittle-plastic transition, J. Struct. Geol., 21, 351-369, 1999.
    • Storm, L. C. and Spear, F. S.: Application of the titanium-in-quartz thermometer to pelitic migmatites from the Adirondack Highlands, New York, Journal of Metamorphic Geology, 27, 479-494, doi:10.1111/j.1525-1314.2009.00829.x, 2009.
    • Thomas, J. and Watson, E.: Application of the Ti-in-quartz thermobarometer to rutile-free systems, Reply to: A comment on: “TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz”, Contributions to Mineralogy and Petrology, 164, 369-374, doi:10.1007/s00410-012-0761-5, 2012.
    • Thomas, J. B., Watson, E. B., Spear, F. S., Shemella, P. T., Nayak, S. K., and Lanzirotti, A.: TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz, Contributions to Mineralogy and Petrology, 160, 743- 759, doi:10.1007/s00410-010-0505-3, 2010.
    • Tillman, K. S., Byrne, T. B., and Lu, C.-Y.: Pre-collision extensional structures from the central range, Taiwan: implications for the kinematic evolution of the South China Margin, Acta Geologica Taiwanica, 30, 11-26, 1992.
    • Tillman, K. S. and Byrne, T. B.: Kinematic analysis of the Taiwan Slate Belt, Tectonics, 14, 322-341, 1995.
    • Tillman, K. S. and Byrne, T. B.: Out-of-sequence thrusting in the Taiwan Slate Belt, J. Geol. Soc., 39, 189-208, 1996.
    • Townend, J. and Zoback, M. D.: How faulting keeps the crust strong, Geology, 28, 399-402, 2000.
    • Tsan, S. F.: Structural geology of the southern Hsu¨ ehshan range, Taiwan, Proc. Geol. Soc. China, 14, 62-75, 1971.
    • Tsao, S. J.: The geological significance of illite crystallinity, zircon fission-track ages and K-Ar ages of metasedimentary rocks of the Central Range, Ph.D., National Taiwan University, Taipei, 272 pp., 1996.
    • Urai, J. L., Means, W. D., and Lister, G. S.: Dynamic recrystallization of minerals, in: Mineral and rock deformation: laboratory studies, The Paterson Volume, Geophysical Monograph 36, edited by: Hobbs, B. E. and Heard, H. C., American Geophysical Union, Washington, DC, 161-199, 1986.
    • van Daalen, M., Heilbronner, R., and Kunze, K.: Orientation analysis of localized shear deformation in quartz fibres at the brittleductile transition, Tectonophysics, 303, 83-107, 1999.
    • Voll, G.: Recrystallization of quartz, biotite and feldspars from Erstfeld to the Leventina nappe, Swiss Alps, and its geological significance, Schweizer Mineralogische und Petrographische Mitteilungen, 56, 641-647, 1976.
    • Wark, D. and Spear, F.: Ti in quartz: Cathodoluminescence and thermometry, Goldschmidt 2005, A592, 2005.
    • Wark, D. A. and Watson, B.: TitaniQ: a titanium-in-quartz geothermometer, Contrib. Mineral. Petr., 2006, 743-754, 2006.
    • Wilson, C. J. N., Seward, T. M., Allan, A. S. R., Charlier, B. L. A., and Bello, L.: A comment on: “TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz”, edited by: Thomas, J. B., Watson, E. B., Spear, F. S., Shemella, P. T., Nayak, S. K., and Lanzirotti, A., Contrib. Mineral. Petr., 164, 359-368, doi:10.1007/s00410-012-0757-1, 2012.
    • Yen, T. P.: The Eocene sandstones in the Hsu¨ ehshan range terrain, Northern Taiwan, Proc. Geol. Soc. China, 16, 97-110, 1973.
    • Zhou, D., Yu, H.-S., Xu, H.-H., Shi, X.-B., and Chou, Y.-W.: Modeling of thermo-rheological structure of lithosphere under the foreland basin and mountain belt of Taiwan, Tectonophysics, 374, 115-134, doi:10.1016/s0040-1951(03)00236-1, 2003.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article