Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
He, Yang-Hui; Jejjala, Vishnu; Minic, Djordje (2009)
Publisher: Virgina Tech, IPNAS
Languages: English
Types: Preprint
Subjects: QC, Mathematical Physics, High Energy Physics - Theory, Mathematics - Number Theory
We rewrite the zero-counting formula within the critical strip of the Riemann zeta function as a cumulative density distribution; this subsequently allows us to formally derive an integral expression for the Li coefficients associated with the Riemann xi-function which, in particular, indicate that their positivity criterion is obeyed, whereby entailing the criticality of the non-trivial zeros. We conjecture the validity of this and related expressions without the need for the Riemann Hypothesis and also offer a physical interpretation of the result and discuss the Hilbert-Polya approach.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] B. Riemann, “Ueber die Anzahl der Primzahlen unter einer gegebenen Gr¨oße,” Monat. der K¨onigl. Preuss. Akad. der Wissen. zu Berlin aus der Jahre 1859, 671 (1860).
    • [2] E. Bombieri, “Problems of the millennium: The Riemann hypothesis,” Clay Mathematics Institute (2000), http://www.claymath.org/millennium/Riemann Hypothesis/Official Problem Description.pdf.
    • [3] B. Conrey, “The Riemann hypothesis,” AMS Notices, 341 (2003).
    • [4] D. Hilbert, unpublished (c. 1914); G. Po´lya, unpublished (c. 1914).
    • [5] A. Selberg, “Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series,” J. Indian Math. Soc. 20, 47 (1956). See also D. Hejhal, The Selberg Trace Formula for P SL(2, R), Vol. I, Springer Lecture Notes 548 (1976).
    • [6] A. Weil, “Sur les 'formules explicites' de la th´eorie des nombres premiers,” Meddelanden Fran Lunds Univ. Mat. Sem. (d´edi´e `a Marcel Riesz), 252 (1952); -, Collected Papers, New York: Springer-Verlag, Vol. II, 48 (1980). See also A. P. Guinand, “Summation formulae and self-reciprocal functions (III),” Quarterly J. Math. 13, 30 (1942); -, “A summation formula in the theory of prime numbers,” Proc. London Math. Soc. 50, 107 (1948).
    • [7] H. L. Montgomery, “The pair correlation of zeros of the zeta function,” in Analytic Number Theory, vol. 24 of AMS Proceedings of Symposia in Pure Mathematics, 181 (1973).
    • [8] A. M. Odlyzko, “On the distribution of spacings between zeros of the zeta function,” Math. Computation 48, 273 (1987). See also X. Gourdon and P. Sebah, http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeroscompute.html.
    • [9] M. R. Watkins, http://www.maths.ex.ac.uk/∼mwatkins/zeta/physics.htm.
    • [10] M. V. Berry and J. Keating, “H = xp and the Riemann zeros” in Supersymmetry and trace formulae: chaos and disorder, I. V. Lerner and J. P. Keating, eds., New York: Plenum (1999). -, “The Riemann zeros and eigenvalue asymptotics,” SIAM Review 41, 236 (1999) and references therein.
    • [11] A. Connes, “Trace formula in noncommutative geometry and the zeros of the Riemann zeta function,” Sel. Math., New Ser. 5, 29 (1999) [arXiv:math/9811068]. For more details consult the recent book A. Connes and M. Marcolli, Noncommutative geometry, quantum fields, and motives, AMS (2008).
    • [12] G. Sierra, “H = x p with interaction and the Riemann zeros,” Nucl. Phys. B 776, 327 (2007) [arXiv:math-ph/0702034]; -, “The Riemann zeros and the cyclic Renormalization Group,” J. Stat. Mech. 0512, P006 (2005) [arXiv:math.nt/0510572]; -, “A quantum mechanical model of the Riemann zeros,” New J. Phys. 10, 033016 (2008) [arXiv:0712.0705 [math-ph]]; G. Sierra and P. K. Townsend, “Landau levels and Riemann zeros,” Phys. Rev. Lett. 101, 110201 (2008) [arXiv:0805.4079 [math-ph]].
    • [13] X.-J. Li, “The positivity of a sequence of numbers and the Riemann hypothesis,” J. Numb. Th. 65, 325 (1997).
    • [14] E. Bombieri and J. C. Lagarias, “Complements to Li's criterion for the Riemann hypothesis,” J. Numb. Th. 77, 274 (1999).
    • [15] H. M. Edwards, Riemann's zeta function, New York: Academic Press (1974).
    • [16] E. C. Titchmarsh, The theory of the Riemann zeta function, D. R. Heath-Brown, ed., Oxford: Clarendon Press (1986).
    • [17] A. Ivic, The Riemann Zeta Function, New York: John Wiley (1986).
    • [18] J. B. Conrey, A. Ghosh, and S. M. Gonek, “Simple zeros of the Riemann zeta function,” Proc. London Math. Soc. 76, 497 (1998).
    • [19] X. Gourdon, “The 1013 first zeros of the Riemann zeta function, and zeros computation at very large height” (2004), http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf.
    • [20] A. Weil, “Numbers of solutions of equations in finite fields,” Bull. AMS 55, 497 (1949); P. Deligne, “La conjecture de Weil: I,” Publ. Math. IHE´S, 43, 273 (1974); -, “La conjecture de Weil: II,” Publ. Math. IHE´S, 52, 137 (1980). For a book review, consult, for example, E. Freitag and R. Kiehl, E´tale cohomology and the Weil conjecture, Berlin: Springer-Verlag (1988).
    • [21] A. M. Polyakov, Gauge Fields and Strings, Chur: Harwood (1987).
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

    Title Year Similarity

    On the Physics of the Riemann Zeros


Share - Bookmark

Cite this article