LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lindgren, P.; Lee, M.R.; Sofe, M.R.; Zolensky, M.E. (2013)
Publisher: Wiley-Blackwell on behalf of The Meteoritical Society
Languages: English
Types: Article
Subjects:
Clasts in the CM2 carbonaceous chondrite Lonewolf Nunataks (LON) 94101 have been characterized using scanning and transmission electron microscopy and electron microprobe analysis to determine their degrees of aqueous alteration, and the timing of alteration relative to incorporation of clasts into the host. The provenance of the clasts, and the mechanism by which they were incorporated and mixed with their host material are also considered. Results show that at least five distinct types of clasts occur in LON 94101, of which four have been aqueously altered to various degrees and one is largely anhydrous. The fact that they have had different alteration histories implies that the main part of aqueous activity occurred prior to the mixing and assimilation of the clasts with their host. Further, the presence of such a variety of clasts suggests complex mixing in a dynamic environment involving material from various sources. Two of the clasts, one containing approximately 46 vol% carbonate and the other featuring crystals of pyrrhotite up to approximately 1 mm in size, are examples of unusual lithologies and indicate concentration of chemical elements in discrete areas of the parent body(ies), possibly by flow of aqueous solutions.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Antarctic Meteorite Newsletter 18 (2), August 1995, Houston, TX: NASA Johnson Space Center.
    • Bischoff A. 1998. Aqueous alteration of carbonaceous chondrites: Evidence for preaccretionary alteration-A review. Meteoritics & Planetary Science 33:1113-1122.
    • Bischoff A. and Geiger T. 1994. The unique carbonaceous chondrite Acfer 094: The first CM3 chondrite (?). Proceedings, 25th Lunar and Planetary Science Conference. pp.115-116.
    • Bischoff A. and Schultz L. 2004. Abundance and meaning of regolith breccias among meteorites (abstract). Meteoritics & Planetary Science 39:A15.
    • Bischoff A., Palme H., Schultz L., Weber D., Weber H. W., and Spettel B. 1993. Acfer 182 and paired samples, an iron-rich carbonaceous chondrite: Similarities with ALH 85085 and relationship to CR chondrites. Geochimica et Cosmochimica Acta 57:2631-2648.
    • Bischoff A., Scott E. R. D., Metzler K., and Goodrich C. A. 2006. Nature and origins of meteoritic breccias. In Meteoritics and the early solar system II, edited by Lauretta D. S. and McSween H. Y., Jr. Tuscon, Arizona: The University of Arizona Press. pp. 679-712.
    • Bischoff A., Horstmann M., Pack A., Laubenstein M., and Haberer S. 2010. Asteroid 2008 TC3-Almahata Sitta: A spectacular breccia containing many different ureilitic and chondritic lithologies. Meteoritics & Planetary Science 45:1638-1656.
    • Brearley A. J. 2003. Nebular versus parent-body processing. In Meteorites, comets, and planets, edited by Davis A. Treatise on geochemistry, vol. 1. Amsterdam: Elsevier. pp. 247-268.
    • Brearley A. J. 2006. The action of water. In Meteoritics and the early solar system II, edited by Lauretta D. S. and McSween H. Y., Jr. Tuscon, Arizona: The University of Arizona Press. pp. 587-624.
    • Brearley A. J. and Papike J. J. 1993. Carbonaceous chondrite clasts in the Kapoeta howardite. Proceedings, 24th Lunar and Planetary Science Conference. pp. 183- 184.
    • Brearley A. J. and Prinz M. 1992. CI chondrite-like clasts in the Nilpena polymict ureilite: Implications for aqueous alteration processes in CI chondrites. Geochimica et Cosmochimica Acta 56:1373-1386.
    • Browning L. B., McSween H. Y., Jr., and Zolensky M. E. 1996. Correlated alteration effects in CM carbonaceous chondrites. Geochimica et Cosmochimica Acta 60:2621- 2633.
    • Browning L., McSween H., Jr., and Zolensky M. E. 2000. On the origin of rim textures surrounding anhydrous silicate grains in carbonaceous chondrites. Meteoritics & Planetary Science 35:1015-1023.
    • Bullock E. S., Gounelle M., Lauretta D. S., Grady M., and Russell S. S. 2005. Mineralogy and texture of Fe-Ni sulphides in CI1 chondrites: Clues to the extent of aqueous alteration on the CI1 parent body. Geochimica et Cosmochimica Acta 69:2687-2700.
    • Bunch T. E. and Chang S. 1980. Carbonaceous chondritesII. Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions. Geochimica et Cosmochimica Acta 44:1543-1577.
    • Ciesla F. J., Lauretta D. S., Cohen B. A., and Hood L. L. 2003. A nebular origin for chondritic fine-grained phyllosilicates. Science 299:549-552.
    • Endress M. and Bischoff A. 1996. Carbonates in CI chondrites: Clues to parent body evolution. Geochimica et Cosmochimica Acta 60:489-507.
    • Endress M., Keil K., Bischoff A., Spettel B., Clayton R. N., and Mayeda T. K. 1994. Origin of dark clasts in the Acfer 059/El Djouf 001 CR2 chondrite. Meteoritics 29:26-40.
    • Gounelle M., Zolensky M. E., Liou J.-C., Bland P. A., and Alard O. 2003. Mineralogy of carbonaceous chondrite microclasts in howardites: Identification of C2 fossil micrometeorites. Geochimica et Cosmochimica Acta 67:507-527.
    • Gounelle M., Engrand C., Alard O., Bland P. A., Zolensky M. E., Russel S., and Duprat J. 2005. Hydrogen isotopic composition of water from fossil micrometeorites in howardites. Geochimica et Cosmochimica Acta 69:3431- 3443.
    • Greshake A. 1997. The primitive matrix of the unique carbonaceous chondrite Acfer 094: A TEM study. Geochimica et Cosmochimica Acta 61:437-452.
    • Greshake A., Krot A. N., Meibom A., Weisberg M. K., Zolensky M. E., and Keil K. 2002. Heavily-hydrated lithic clasts in CH chondrites and the related, metal-rich chondrites Queen Alexandra Range 94411 and Hammadah al Hamra 237. Meteoritics & Planetary Science 37:281-293.
    • Grossman J. M., Rubin A. E., and MacPherson G. J. 1988. A unique volatile-poor carbonaceous chondrite with possible implications for nebular fractionation processes. Earth and planetary Science Letters 91:33-54.
    • Hezel D. C. and Palme H. 2010. The chemical relationship between chondrules and matrix and the chondrule matrix complementarity. Earth and Planetary Science Letters 294:85-93.
    • Howard K. T., Benedix G. K., Bland P. A., and Cressey G. 2009. Modal mineralogy of CM2 chondrites by PSDXRD: Part 1. Total phyllosilicate abundance and the degree of aqueous alteration. Geochimica et Cosmochimica Acta 73:4576-4589.
    • Howard K. T., Benedix G. K., Bland P. A., and Cressey G. 2011. Modal mineralogy of CM chondrites by X-ray diffraction (PSD-XRD): Part 2. Degree, nature and settings of aqueous alteration. Geochimica et Cosmochimica Acta 75:2735-2751.
    • Huss G. R., Rubin A. E., and Grossman J. N. 2006. Thermal metamorphism in chondrites. In Meteoritics and the early solar system II, edited by Lauretta D. S. and McSween H. Y, Jr. Tuscon, Arizona: The University of Arizona Press. pp. 567-586.
    • Jogo K., Krot A. N., and Nagashima K. 2011. Heavilymetamorphosed clasts in the CV carbonaceous chondrite Mokoia: Evidence for strong thermal metamorphism on the CV parent body (abstract #1613). 42nd Lunar and Planetary Science Conference. CD-ROM.
    • Johnson C. A. and Prinz M. 1993. Carbonate compositions in CM and CI chondrites, and implications for aqueous alteration. Geochimica et Cosmochimica Acta 57:2843- 2852.
    • Kallemeyn G. W. and Wasson J. T. 1981. The compositional classification of chondrites-I. The carbonaceous chondrite groups. Geochimica et Cosmochimica Acta 45:1217-1230.
    • Kerridge J. F., MacKay A. L., and Boynton W. V. 1979. Magnetite in CI carbonaceous meteorites: Origin by aqueous activity on a planetesimal surface. Science 205:395-397.
    • Krot A. N., Scott E. R. D., and Zolensky M. E. 1995. Mineralogical and chemical modification of components in CV3 chondrites: Nebular or asteroidal processing? Meteoritics 30:748-775.
    • Lee M. R. and Ellen R. 2008. Aragonite in the Murray (CM2) carbonaceous chondrite: Implications for parent body compaction and aqueous alteration. Meteoritics & Planetary Science 43:1219-1231.
    • Lee M. R. and Smith C. L. 2006. Scanning transmission electron microscopy using a SEM: Applications to mineralogy and petrology. Mineralogical Magazine 70:579- 590.
    • Lee M. R., Bland P. A., and Graham G. 2003. Preparation of TEM samples by focused ion beam (FIB) techniques: Applications to the study of clays and phyllosilicates in meteorites. Mineralogical Magazine 67:581-592.
    • Lee M. R., Sofe M. R., and Lindgren P. 2011. Evolution of carbonate mineralization in the CM2 carbonaceous chondrites (abstract #1710). 42nd Lunar and Planetary Science Conference. CD-ROM.
    • Lindgren P., Lee M. R., Sofe M., and Burchell M. J. 2011. Microstructure of calcite in the CM2 carbonaceous chondrite LON 94101: Implications for deformation history during and/or after aqueous alteration. Earth and Planetary Science Letters 306:289-298.
    • MacPherson G. J., Mittlefehldt D. W., Lipschutz M. E., Clayton R. N., Bullock E. S., Ivanov A. V., Mayeda T. K., and Wang M.-S. 2009. The Kaidun chondrite breccias: Petrology, oxygen isotopes, and trace element abundances. Geochimica et Cosmochimica Acta 73:5493-5511.
    • McSween H. Y., Jr. 1979. Are carbonaceous chondrites primitive or processed? A review. Reviews of Geophysical Space Physics 17:1059-1078.
    • Nakashima D., Nakamura T., and Noguchi T. 2003. Formation history of CI-like phyllosilicate-rich clasts in the Tsukuba meteorite inferred from mineralogy and noble gas signature. Earth and Planetary Science Letters 212:321-336.
    • Newton J., Bischoff A., Arden J. W., Franchi I. A., Geiger T., Greshake A., and Pillinger C. T. 1995. Acfer 094, a uniquely primitive carbonaceous chondrite from the Sahara. Meteoritics 30:47-56.
    • Olsen E. J., Davis A. M., Hutcheon I. D., Clayton R. N., Mayeda T. K., and Grossman L. 1988. Murchison xenoliths. Geochimica et Cosmochimica Acta 52:1615-1626.
    • Petitat M., Marrocchi Y., McKeegan K. D., Mostefaoui S., Meibom A., Zolensky M. E., and Gounelle M. 2011. 53Mn-53Cr ages of Kaidun carbonates. Meteoritics & Planetary Science 46:275-283.
    • Prinz M., Weisberg M. K., Nehru C. E., and Delaney J. S. 1987. EET 83309, a polymict ureilite: Recognition of a new group. 18th Lunar and Planetary Science Conference. p. 802.
    • Reid A. M., Buchanan P., Zolensky M. E., and Barrett R. A. 1990. The Bholghati howardite: Petrography and mineral chemistry. Geochimica et Cosmochimica Acta 54:2161- 2166.
    • Rubin A. E. 2012. Collisional facilitation of aqueous alteration of CM and CV carbonaceous chondrites. Geochimica et Cosmochimica Acta 90:181-194.
    • Rubin A. E. and Wasson J. T. 1986. Chondrules in the Murray CM2 meteorite and compositional differences between CM-CO and ordinary chondrite chondrules. Geochimica et Cosmochimica Acta 50:307-315.
    • Rubin A. E., Trigo-Rodrıges J. M., Huber H., and Wasson J. T. 2007. Progressive aqueous alteration of CM carbonaceous chondrites. Geochimica et Cosmochimica Acta 71:2361-2382.
    • Semenko V. P., Bischoff A., Weber I., Perron C., and Girich A. L. 2001. Mineralogy of fine-grained material in the Krymka (LL3.1) chondrite. Meteoritics & Planetary Science 36:1067-1085.
    • Semenko V. P., Jessberger E. K., Chaussidon M., Weber I., Stephan T., and Wies C. 2005. Carbonaceous xenoliths in the Krymka LL3.1 chondrite: Mysteries and established facts. Geochimica et Cosmochimica Acta 69: 2165-2182.
    • Sofe M. R., Lee M. R., and Lindgren P. 2011. Aragonite in the CM carbonaceous chondrites: A proxy for the magnitude of aqueous alteration (abstract #5250). Meteoritics & Planetary Science 46:A217.
    • Tomeoka K. 1990. Phyllosilicate veins in a CI meteorite: Evidence for aqueous alteration on the parent body. Nature 345:138-140.
    • Tyra M. A., Matzel J., Brearley A. J., and Hutcheon I. D. 2010. Variability in carbonate petrography and NanoSims 53Mn/53Cr systematics in paired CM1 chondrites ALH 84051, ALH 84049, and ALH 84034 (abstract #2687). 41st Lunar and Planetary Science Conference. CD-ROM.
    • Tyra M. A., Brearley A. J., and Guan Y. 2011a. Oxygen isotopic composition of secondary carbonates in CR1 chondrite GRO 95577 (abstract #1639). 42nd Lunar and Planetary Science Conference. CD-ROM.
    • Tyra M. A., Farquhar J., Guan Y., and Leshin L. A. 2011b. An oxygen isotope dichotomy in CM2 chondritic carbonates-A SIMS approach. Geochimica et Cosmochimica Acta 77:383- 395.
    • Wasson T. J. and Rubin A. E. 2009. Composition of matrix in the CR chondrite LAP 02342. Geochimica et Cosmochimica Acta 73:1436-1460.
    • Zolensky M. E. and Ivanov A. 2003. The Kaidun microbreccia meteorite: A harvest from the inner and outer asteroid belt. Chemie der Erde Geochemistry 63:185- 246.
    • Zolensky M. E. and McSween H. Y., Jr. 1988. Aqueous alteration. In Meteorites and the early solar system, edited by Kerridge J. F. and Matthews M. S. Tuscon, Arizona: The University of Arizona Press. pp. 114-143.
    • Zolensky M. E., Barrett R. A., and Ivanov A. V. 1991. Mineralogy and matrix composition of clasts in the chondritic breccias Kaidun. 22nd Lunar and Planetary Science Conference. p. 1565.
    • Zolensky M. E., Barrett R., and Browning L. 1993. Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites. Geochimica et Cosmochimica Acta 57:3123-3148.
    • Zolensky M. E., Weisberg M. K., Buchanan P. C., and Mittlefehldt D. W. 1996. Carbonaceous chondrite clasts in HED achondrites. Workshop on Evolution of Igneous Asteroids: Focus on Vesta and the HED Meterorites. p. 43.
    • Zolensky M. E., Mittlefehldt D. W., Lipschutz M. E., Wang M.-S., Clayton R. N., Mayeda T. K., Grady M. M., Pillinger C., and Barber D. 1997. CM chondrites exhibit the complete petrologic range from type 2 to 1. Geochimica et Cosmochimica Acta 61:5099-5115.
    • Zolensky M. E., Nakamura K., Gounelle M., Mikouchi T., Kasama T., Tachikawa O., and Tonui E. 2002. Mineralogy of Tagish Lake: An ungrouped type 2 carbonaceous chondrite. Meteoritics & Planetary Science 37:737-761.
    • Zolensky M. E., Briani G., Gounelle M., Mikouchi T., Ohsumi K., Weisberg M. K., Le L., Satake W., and Kurihara T. 2009. Searching for chips of Kuiper Belt Objects in meteorites (abstract #1288). 40th Lunar and Planetary Science Conference. CD-ROM.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article