LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Spera, Mario; Mapelli, Michela; Jeffries, Robin D. (2016)
Publisher: Oxford University Press
Languages: English
Types: Article
Subjects: Astrophysics - Solar and Stellar Astrophysics, QB, QC, Astrophysics - Astrophysics of Galaxies

Classified by OpenAIRE into

arxiv: Astrophysics::Galaxy Astrophysics, Astrophysics::Cosmology and Extragalactic Astrophysics, Astrophysics::Solar and Stellar Astrophysics, Astrophysics::Earth and Planetary Astrophysics
We investigate whether open clusters (OCs) tend to energy equipartition, by means of direct N-body simulations with a broken power-law mass function. We find that the simulated OCs become strongly mass segregated, but the local velocity dispersion does not depend on the stellar mass for most of the mass range: the curve of the velocity dispersion as a function of mass is nearly flat even after several half-mass relaxation times, regardless of the adopted stellar evolution recipes and Galactic tidal field model. This result holds both if we start from virialized King models and if we use clumpy sub-virial initial conditions. The velocity dispersion of the most massive stars and stellar remnants tends to be higher than the velocity dispersion of the lighter stars. This trend is particularly evident in simulations without stellar evolution. We interpret this result as a consequence of the strong mass segregation, which leads to Spitzer's instability. Stellar winds delay the onset of the instability. Our simulations strongly support the result that OCs do not attain equipartition, for a wide range of initial conditions.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alessandrini E., Lanzoni B., Miocchi P., Ciotti L., Ferraro F. R., 2014, ApJ, 795, 169
    • Allen C., Santillan A., 1991, Rev. Mex. Astron. Astrofis., 22, 255
    • Allison R. J., Goodwin S. P., Parker R. J., Portegies Zwart S. F., de Grijs R., Kouwenhoven M. B. N., 2009, MNRAS, 395, 1449
    • Anderson J., van der Marel R. P., 2010, ApJ, 710, 1032
    • Arca-Sedda M., 2016, MNRAS, 455, 35
    • Beccari G., Dalessandro E., Lanzoni B., Ferraro F. R., Bellazzini M., Sollima A., 2015, ApJ, 814, 144
    • Berghea C. T., Dudik R. P., Tincher J., Winter L. M., 2013, ApJ, 776, 100
    • Bianchini P., van de Ven G., Norris M. A., Schinnerer E., Varri A. L., 2016, MNRAS, 458, 3644
    • Binney J., Tremaine S., 2008, Galactic Dynamics, 2nd edn. Princeton Univ. Press, Princeton, NJ
    • Boltzmann L., 1876, Wiener Ber, 74, 553
    • Breen P. G., Heggie D. C., 2013, MNRAS, 432, 2779
    • Bressan A., Marigo P., Girardi L., Salasnich B., Dal Cero C., Rubele S., Nanni A., 2012, MNRAS, 427, 127
    • Caffau E., Ludwig H.-G., Steffen M., Freytag B., Bonifacio P., 2011, Sol. Phys., 268, 255
    • Chatterjee S., Rodriguez C. L., Rasio F. A., 2016, preprint (arXiv:1603.00884)
    • Chen Y., Bressan A., Girardi L., Marigo P., Kong X., Lanza A., 2015, MNRAS, 452, 1068
    • Ciotti L., 2010, in Bertin G., de Luca F., Lodato G., Pozzoli R., Rome´ M., eds, AIP Conf. Proc. Vol. 1242, Plasmas in the Laboratory and the Universe: Interactions, Patterns, and Turbulence. Am. Inst. Phys., New York, p. 117
    • Downing J. M. B., Benacquista M. J., Giersz M., Spurzem R., 2010, MNRAS, 407, 1946
    • Downing J. M. B., Benacquista M. J., Giersz M., Spurzem R., 2011, MNRAS, 416, 133
    • Ertl T., Janka H.-T., Woosley S. E., Sukhbold T., Ugliano M., 2016, ApJ, 818, 124
    • Ferraro F. R. et al., 2012, Nature, 492, 393
    • Frederick J., 2006, Statistical Methods in Experimental Physics, 2nd edn. World Scientific Press, Singapore
    • Fryer C. L., Belczynski K., Wiktorowicz G., Dominik M., Kalogera V., Holz D. E., 2012, ApJ, 749, 91
    • Fujii M. S., Portegies Zwart S., 2014, MNRAS, 439, 1003
    • Gaburov E., Harfst S., Zwart S. P., 2009, New Astron., 14, 630
    • Gieles M., Zocchi A., 2015, MNRAS, 454, 576
    • Giersz M., Heggie D. C., 1994, MNRAS, 268, 257
    • Giersz M., Leigh N., Hypki A., Lu¨tzgendorf N., Askar A., 2015, MNRAS, 454, 3150
    • Gilmore G. et al., 2012, The Messenger, 147, 25
    • Goodman J., 1987, ApJ, 313, 576
    • Goswami S., Kiel P., Rasio F. A., 2014, ApJ, 781, 81
    • Gunn J. E., Griffin R. F., 1979, AJ, 84, 752
    • Heggie D. C., 1975, MNRAS, 173, 729
    • Hobbs G., Lorimer D. R., Lyne A. G., Kramer M., 2005, MNRAS, 360, 974
    • Inagaki S., Wiyanto P., 1984, PASJ, 36, 391
    • Khalisi E., Amaro-Seoane P., Spurzem R., 2007, MNRAS, 374, 703
    • King I., 1962, AJ, 67, 471
    • King I. R., 1966, AJ, 71, 64
    • Kroupa P., 2001, MNRAS, 322, 231
    • Lada C. J., Lada E. A., 2003, ARA&A, 41, 57
    • Li C., de Grijs R., Deng L., 2013, MNRAS, 436, 1497
    • McMillan S. L. W., Vesperini E., Portegies Zwart S. F., 2007, ApJ, 655, L45
    • Makino J., Aarseth S. J., 1992, PASJ, 44, 141
    • Mapelli M., 2016, MNRAS, in press
    • Mapelli M., Bressan A., 2013, MNRAS, 430, 3120
    • Mapelli M., Zampieri L., 2014, ApJ, 794, 7
    • Mapelli M., Sigurdsson S., Colpi M., Ferraro F. R., Possenti A., Rood R. T., Sills A., Beccari G., 2004, ApJ, 605, L29
    • Mapelli M., Sigurdsson S., Ferraro F. R., Colpi M., Possenti A., Lanzoni B., 2006, MNRAS, 373, 361
    • Mapelli M., Ripamonti E., Zampieri L., Colpi M., 2011, MNRAS, 416, 1756
    • Mapelli M., Zampieri L., Ripamonti E., Bressan A., 2013, MNRAS, 429, 2298
    • Merritt D., 1981, AJ, 86, 318
    • Miller M. C., Hamilton D. P., 2002, MNRAS, 330, 232
    • Miocchi P., 2006, MNRAS, 366, 227
    • Miyamoto M., Nagai R., 1975, PASJ, 27, 533
    • Morscher M., Pattabiraman B., Rodriguez C., Rasio F. A., Umbreit S., 2015, ApJ, 800, 9
    • O'Leary R. M., Rasio F. A., Fregeau J. M., Ivanova N., O'Shaughnessy R., 2006, ApJ, 637, 937
    • O'Leary R. M., Meiron Y., Kocsis B., 2016, preprint (arXiv:1602.02809)
    • Parker R. J., Goodwin S. P., 2015, MNRAS, 449, 3381
    • Perryman M. A. C. et al., 2001, A&A, 369, 339
    • Plummer H. C., 1911, MNRAS, 71, 460
    • Portegies Zwart S. F., McMillan S. L. W., 2002, ApJ, 576, 899
    • Portegies Zwart S. F., Makino J., McMillan S. L. W., Hut P., 1999, A&A, 348, 117
    • Portegies Zwart S. F., McMillan S. L. W., Hut P., Makino J., 2001, MNRAS, 321, 199
    • Proszkow E.-M., Adams F. C., Hartmann L. W., Tobin J. J., 2009, ApJ, 697, 1020
    • Randich S., Gilmore G., Gaia-ESO Consortium, 2013, The Messenger, 154, 47
    • Rodriguez C. L., Pattabiraman B., Chatterjee S., Choudhary A., Liao W.-k., Morscher M., Rasio F. A., 2015, preprint (arXiv:1511.00695)
    • Sadowski A., Belczynski K., Bulik T., Ivanova N., Rasio F. A., O'Shaughnessy R., 2008, ApJ, 676, 1162
    • Schmeja S., Kumar M. S. N., Ferreira B., 2008, MNRAS, 389, 1209
    • Sigurdsson S., Hernquist L., 1993, Nature, 364, 423
    • Sippel A. C., Hurley J. R., 2013, MNRAS, 430, L30
    • Sollima A., Carballo-Bello J. A., Beccari G., Ferraro F. R., Pecci F. F., Lanzoni B., 2010, MNRAS, 401, 577
    • Spera M., Capuzzo-Dolcetta R., 2015, preprint (arXiv:1501.01040)
    • Spera M., Mapelli M., Bressan A., 2015, MNRAS, 451, 4086
    • Spitzer L. J., 1969, ApJ, 158, L139
    • Spitzer L. J., Hart M. H., 1971, ApJ, 166, 483
    • Stoeger W. R., 1985, Mem. Soc. Astron. Ital., 56, 759
    • Tang J., Bressan A., Rosenfield P., Slemer A., Marigo P., Girardi L., Bianchi L., 2014, MNRAS, 445, 4287
    • Trani A. A., Mapelli M., Bressan A., 2014, MNRAS, 445, 1967
    • Trenti M., van der Marel R., 2013, MNRAS, 435, 3272
    • Vishniac E. T., 1978, ApJ, 223, 986
    • Wiyanto P., 1989, Astrophys. Space Sci, 159, 219
    • Wu Z.-Y., Zhou X., Ma J., Du C.-H., 2009, MNRAS, 399, 2146
    • Ziosi B. M., Mapelli M., Branchesi M., Tormen G., 2014, MNRAS, 441, 3703
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article