LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Leib, J.; Lo, C. C. H.; Snyder, John Evan; Jiles, David
Publisher: American Institute of Physics
Languages: English
Types: Article
Subjects: QC
Identifiers:doi:10.1063/1.1540128
Knowledge of domain behavior in magnetic tunnel junctions is an essential component, together with knowledge of the electron band structure, for understanding their magnetoelectronic properties. To this purpose, the magnetization reversal processes of a multilayer tunnel junction of structure substrate/NiFe/AlOx/FeCo/CrPtMn/Al of tapered half-ellipsoid shape have been imaged using a magnetic force microscope (MFM) with in situ applied magnetic fields. Stripe domains through both the stack and free layers observed at zero applied field were erased by a ∼100 Oe field applied to the left followed by applying a small field to the right. Magnetic domain structure did not reappear in the MFM images until a field of ∼400 Oe was applied to the right. This domain pattern then persisted when the magnetic field was reduced to zero. A drastic difference in domain patterns throughout the rotational processes to saturation in each direction was also observed. When the field was applied to the left, domain walls rotated toward the direction perpendicular to the applied field before disappearing. However, in near-saturation fields to the right, domain walls formed nearly parallel to the applied field and rotated away from parallel as the applied field strength was decreased. From these images, therefore, significant insight has been gained into the magnetization processes and physical phenomena behind the magnetoresistive behavior of these junctions. © 2003 American Institute of Physics.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 ~1995!.
    • 2 R. S. Beech, J. Anderson, J. Daughton, B. A. Everitt, and D. Wang, IEEE Trans. Magn. 32, 4713 ~1996!.
    • 3 J. S. Moodera and G. Mathon, J. Magn. Magn. Mater. 200, 248 ~1999!.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • NSF | SGER: New Magnetic Tunnel J...

Cite this article