LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Mihalyi, Agnes
Languages: English
Types: Doctoral thesis
Subjects: QD, RM
Bacterial drug resistance is an increasingly serious problem that threatens public health and researchers need to develop new drugs. The biosynthetic pathway of the bacterial peptidoglycan is a known and good target for the development of novel antibacterial agents.\ud \ud This research project focused on the first lipid-linked step of peptidoglycan biosynthesis. The enzyme required for this step is Phospho-MurNAc-pentapeptide Translocase MraY. Our aim was to screen for novel inhibitors of MraY. A continuous fluorescence MraY assay was developed and optimised to test known and potential inhibitors such as nucleoside natural products, antimicrobial peptides and structurally new small molecule potential inhibitors.\ud \ud The fluorescence assay was adapted to a high-throughput fluorescence assay in microtitre plate format and around 2,000 compounds were screened from the diversity set of the National Cancer Institute (NCI) against MraY in order to identify novel inhibitors. However, around 22 % of the test compounds from the diversity set interfered with fluorescence. Therefore, a radiochemical MraY assay was developed as an independent method. We eventually identified one potential MraY inhibitor from the diversity set, the naphthylisoquinoline alkaloid, michellamine B, with IC50 values of 400 and 340 μg/ml against E. coli and B. subtilis MraY respectively. The compound showed antibacterial activity against B. subtilis with an MIC value of 16 μg/ml.\ud \ud It was established that MraY inhibition from the pacidamycin producer, S. coeruleorubidus, was detectable directly from culture supernatants by the fluorescence and by the radiochemical MraY assays. Therefore, we tested culture supernatants and cell extracts from various Streptomyces strains. MraY inhibition was observed using cell extracts from Streptomyces venezuelae, and higher levels of inhibition were observed from a gbnB/gbnR S. venezuelae mutant, though it was not possible to identify the active species present.\ud \ud Following an earlier report of halogenated fluoresceins identified from a combined MraY/MurG screen, we also tested several halogenated fluoresceins, and found that phloxine B, a tetra-bromo fluorescein analogue, was an inhibitor of E. coli MraY with an IC50 value of 32 μM, and also inhibited MraY from P. aeruginosa, B. subtilis, M. flavus and S. aureus with IC50 values ranging between 100 and 210 μg/ml.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • B. E. Murray, Braz. J. Infect. Dis.: an official publication of the Brazilian Society of Infectious Diseases, 2000, 4, 9-14.
    • Mesaros, P. Nordmann, P. Plesiat, M. Roussel-Delvallez, J. Van Eldere, Y. Glupczynski, Y. Van Laethem, F. Jacobs, P. Lebecque, A. Malfroot, P. M. Tulkens and F. Van Bambeke, Clin. Microbiol. Infec., 2007, 13, 560-578.
    • G. L. Patrick, An Introduction to Medicinal Chemistry, Oxford University Press, 2009.
    • J. Ziemska, A. Rajnisz and J. Solecka, Cent. Eur. J. Biol., 2013, 8, 943- 957.
    • K. J. Williams and R. P. Bax, Curr. Opin. Investig. Drugs, 2009, 10, 157-163.
    • T. J. Beveridge and J. A. Davies, J. Bacteriol, 1983, 156, 846-858.
    • L. Maliničová, M. Piknová, P. Pristaš and P. Javorský, in Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. The Formatex Microbiology Book Series, ed. A. Mendez-Vilas, Formatex Research Center, Badajoz, 2010, 1, 463-472.
    • A. Bouhss, A. E. Trunkfield, T. D. H. Bugg and D. Mengin-Lecreulx, FEMS Microbiol. Rev., 2008, 32, 208-233.
    • T. D. H. Bugg, A. J. Lloyd and D. I. Roper, Infect. Disord. Drug Targets, 2006, 6, 85-106.
    • S. S. Hegde and T. E. Shrader, J. Biol. Chem., 2001, 276, 6998-7003.
    • K. H. Schleifer, Current Contents/Life Sciences, 1989, 19-19.
    • P. E. Brandish, PhD thesis, University of Southampton, 1995.
    • W. Vollmer and U. Bertsche, Biochim. Biophys. Acta-Biomembranes, 2008, 1778, 1714-1734.
    • W. Vollmer, B. Joris, P. Charlier and S. Foster, FEMS Microbiol. Rev., 2008, 32, 259-286.
    • T. D. H. Bugg, D. Braddick, C. G. Dowson and D. I. Roper, Trends Biotechnol., 2011, 29, 167-173.
    • E. D. Brown, E. I. Vivas, C. T. Walsh and R. Kolter, J. Bacteriol, 1995, 177, 4194-4197.
    • W. S. Du, J. R. Brown, D. R. Sylvester, J. Z. Huang, A. F. Chalker, C. Y. So, D. J. Holmes, D. J. Payne and N. G. Wallis, J. Bacteriol, 2000, 182, 4146-4152.
    • K. L. Blake, A. J. O'Neill, D. Mengin-Lecreulx, P. J. F. Henderson, J. M. Bostock, C. J. Dunsmore, K. J. Simmons, C. W. G. Fishwick, J. A. Leeds and I. Chopra, Mol. Microbiol., 2009, 72, 335-343.
    • F. M. Kahan, J. S. Kahan, P. J. Cassidy and H. Kropp, Ann. N.Y. Acad. Sci., 1974, 235, 364-386.
    • J. L. Marquardt, E. D. Brown, W. S. Lane, T. M. Haley, Y. Ichikawa, C. H. Wong and C. T. Walsh, Biochemistry, 1994, 33, 10646-10651.
    • K. A. L. De Smet, K. E. Kempsell, A. Gallagher, K. Duncan and D. B. Young, Microbiology (Reading), 1999, 145, 3177-3184.
    • H. Han, Y. Yang, S. H. Olesen, A. Becker, S. Betzi and E. Schonbrunn, Biochemistry, 2010, 49, 4276-4282.
    • C. J. Dunsmore, K. Miller, K. L. Blake, S. G. Patching, P. J. F. Henderson, J. A. Garnett, W. J. Stubbings, S. E. V. Phillips, D. J. Palestrant, J. D. L. Angeles, J. A. Leeds, I. Chopra and C. W. G. Fishwick, Bioorg. Med. Chem. Lett., 2008, 18, 1730-1734.
    • A. Steinbach, A. J. Scheidig and C. D. Klein, J. Med. Chem., 2008, 51, 5143-5147.
    • J. Molina-Lopez, F. Sanschagrin and R. C. Levesque, Peptides, 2006, 27, 3115-3121.
    • J. J. Bronson, K. L. DenBleyker, P. J. Falk, R. A. Mate, H. T. Ho, M. J. Pucci and L. B. Snyder, Bioorg. Med. Chem. Lett., 2003, 13, 873-875.
    • C. J. Andres, J. J. Bronson, S. V. D'Andrea, M. S. Deshpande, P. J. Falk, K. A. Grant-Young, W. E. Harte, H. T. Ho, P. F. Misco, J. G. Robertson, D. Stock, Y. X. Sun and A. W. Walsh, Bioorg. Med. Chem. Lett., 2000, 10, 715-717.
    • A. M. Gilbert, A. Failli, J. Shumsky, Y. Yang, A. Severin, G. Singh, W. Hu, D. Keeney, P. J. Petersen and A. H. Katz, J. Med. Chem., 2006, 49, 6027-6036.
    • P. J. Falk, K. M. Ervin, K. S. Volk and H. T. Ho, Biochemistry, 1996, 35, 1417-1422.
    • T. D. H. Bugg and C. T. Walsh, Nat. Prod. Rep., 1992, 9, 199-215.
    • D. E. Ehmann, J. E. Demeritt, K. G. Hull and S. L. Fisher, Biochim. Biophys. Acta Proteins Proteomics, 2004, 1698, 167-174.
    • L. E. Zawadzke, M. Norcia, C. R. Desbonnet, H. Wang, K. FreemanCook and T. J. Dougherty, Assay Drug Dev. Technol., 2008, 6, 95-103.
    • B. L. M. de Jonge, A. Kutschke, M. Uria-Nickelsen, H. D. Kamp and S. D. Mills, Antimicrob. Agents Chemother., 2009, 53, 3331-3336.
    • K. Strancar, D. Blanot and S. Gobec, Bioorg. Med. Chem. Lett., 2006, 16, 343-348.
    • N. Zidar, T. Tomasic, R. Sink, A. Kovac, D. Patin, D. Blanot, C. Contreras-Martel, A. Dessen, M. M. Premru, A. Zega, S. Gobec, L. P. Masic and D. Kikelj, Eur. J. Med. Chem., 2011, 46.
    • J. R. Horton, J. M. Bostock, I. Chopra, L. Hesse, S. E. V. Phillips, D. J. Adams, A. P. Johnson and C. W. G. Fishwick, Bioorg. Med. Chem. Lett., 2003, 13, 1557-1560.
    • J. D. Guzman, A. Gupta, D. Evangelopoulos, C. Basavannacharya, L. C. Pabon, E. A. Plazas, D. R. Munoz, W. A. Delgado, L. E. Cuca, W. Ribon, S. Gibbons and S. Bhakta, J. Antimicrob. Chemother., 2010, 65, 2101-2107.
    • C. Paradis-Bleau, A. Lloyd, F. Sanschagrin, H. Maaroufi, T. Clarke, A. Blewett, C. Dowson, D. I. Roper, T. D. H. Bugg and R. C. Levesque, Biochem. J, 2009, 421, 263-272.
    • H. Im, M. L. Sharpe, U. Strych, M. Davlieva and K. L. Krause, BMC Microbiol., 2011, 11.
    • P. LeMagueres, H. Im, A. Dvorak, U. Strych, M. Benedik and K. L. Krause, Biochemistry, 2003, 42, 14752-14761.
    • P. LeMagueres, H. Im, J. Ebalunode, U. Strych, M. J. Benedik, J. M. Briggs, H. Kohn and K. L. Krause, Biochemistry, 2005, 44, 1471-1481.
    • U. Strych, M. Davlieva, J. P. Longtin, E. L. Murphy, H. Im, M. J. Benedik and K. L. Krause, BMC Microbiol., 2007, 7.
    • D. Wu, T. Hu, L. Zhang, J. Chen, J. Du, J. Ding, H. Jiang and X. Shen, Protein Sci., 2008, 17, 1066-1076.
    • J.-L. Liu, X.-Q. Liu and Y.-W. Shi, World J. Microbiol. Biotechnol., 2012, 28, 267-274.
    • M. P. Lambert and F. C. Neuhaus, J. Bacteriol, 1972, 110, 978-&.
    • J. L. Lynch and F. C. Neuhaus, J. Bacteriol, 1966, 91, 449-460.
    • E. Wang and C. Walsh, Biochemistry, 1978, 17, 1313-1321.
    • M. Ciustea, S. Mootien, A. E. Rosato, O. Perez, P. Cirillo, K. R. Yeung, M. Ledizet, M. H. Cynamon, P. A. Aristoff, R. A. Koski, P. A. Kaplan and K. G. Anthony, Biochem. Pharmacol., 2012, 83, 368-377.
    • C. Fan, P. C. Moews, C. T. Walsh and J. R. Knox, Science, 1994, 266, 439-443.
    • C. Fan, I. S. Park, C. T. Walsh and J. R. Knox, Biochemistry, 1997, 36, 2531-2538.
    • B. A. Ellsworth, N. J. Tom and P. A. Bartlett, Chemistry & Biology, 1996, 3, 37-44.
    • M. Sova, G. Cadez, S. Turk, V. Majce, S. Polanc, S. Batson, A. J. Lloyd, D. I. Roper, C. W. G. Fishwick and S. Gobec, Bioorg. Med. Chem. Lett., 2009, 19, 1376-1379.
    • F. C. Neuhaus and J. L. Lynch, Biochemistry, 1964, 3, 471-480.
    • G. A. Prosser and L. P. S. de Carvalho, FEBS J., 2013, 280, 1150-1166.
    • Y. G. Gu, A. S. Florjancic, R. F. Clark, T. Y. Zhang, C. S. Cooper, D. D. Anderson, C. G. Lerner, J. O. McCall, Y. N. Cai, C. L. BlackSchaefer, G. F. Stamper, P. J. Hajduk and B. A. Beutel, Bioorg. Med. Chem. Lett., 2004, 14, 267-270.
    • E. Z. Baum, S. M. Crespo-Carbone, A. Klinger, B. D. Foleno, I. Turchi, M. Macielag and K. Bush, Antimicrob. Agents Chemother., 2007, 51, 4420-4426.
    • E. Z. Baum, S. M. Crespo-Carbone, B. D. Foleno, L. D. Simon, J. Guillemont, M. Macielag and K. Bush, Antimicrob. Agents Chemother., 2009, 53, 3240-3247.
    • S. Sandhu, PhD thesis, University of Warwick, 2010.
    • C. Paradis-Bleau, A. Lloyd, F. Sanschagrin, T. Clarke, A. Blewett, T. D. H. Bugg and R. C. Levesque, BMC Biochem., 2008, 9.
    • Y. W. Yan, S. Munshi, B. Leiting, M. S. Anderson, J. Chrzas and Z. G. Chen, J. Mol. Biol., 2000, 304.
    • K. L. Longenecker, G. F. Stamper, P. J. Hajduk, E. H. Fry, C. G. Jakob, J. E. Harlan, R. Edalji, D. M. Bartley, K. A. Walter, L. R. Solomon, T. F. Holzman, Y. G. Gu, C. G. Lerner, B. A. Beutel and V. S. Stoll, Protein Sci., 2005, 14.
    • J. A. Bertrand, E. Fanchon, L. Martin, L. Chantalat, G. Auger, D. Blanot, J. van Heijenoort and O. Dideberg, J. Mol. Biol., 2000, 301.
    • O. O. Coker and P. Palittapongarnpim, Afr. J. Microbiol. Res., 2011, 5, 2555-2565.
    • C. M. Apfel, S. Takacs, M. Fountoulakis, M. Stieger and W. Keck, J. Bacteriol, 1999, 181, 483-492.
    • Willough.E, Stroming.Jl and Y. Highasi, J. Biol. Chem., 1972, 247, 5113-&.
    • K. J. Stone and Stroming.Jl, Proc. Natl. Acad. Sci. U.S.A., 1971, 68, 3223-&.
    • R. Bernard, A. Guiseppi, M. Chippaux, M. Foglino and F. Denizot, J. Bacteriol, 2007, 189, 8636-8642.
    • L. E. Zawadzke, P. Wu, L. Cook, L. Fan, M. Casperson, M. Kishnani, D. Calambur, S. J. Hofstead and R. Padmanabha, Anal. Biochem., 2003, 314, 243-252.
    • A. L. Lovering, S. S. Safadi and N. C. J. Strynadka, Annu. Rev. Biochem, 2012, 81, 451-478.
    • M. Crouvoisier, D. Mengin-Lecreulx and J. van Heijenoort, FEBS Lett., 1999, 449, 289-292.
    • L. Chen, H. Men, S. Ha, X. Y. Ye, L. Brunner, Y. Hu and S. Walker, Biochemistry, 2002, 41, 6824-6833.
    • S. Ha, D. Walker, Y. G. Shi and S. Walker, Protein Sci., 2000, 9, 1045- 1052.
    • Y. N. Hu, L. Chen, S. Ha, B. Gross, B. Falcone, D. Walker, M. Mokhtarzadeh and S. Walker, Proc. Natl. Acad. Sci. U.S.A., 2003, 100, 845-849.
    • K. Brown, S. C. M. Vial, N. Dedi, J. Westcott, S. Scally, T. D. H. Bugg, P. A. Charlton and G. M. T. Cheetham, Protein Pept. Lett., 2013, 20, 1002-1008.
    • X. Fang, K. Tiyanont, Y. Zhang, J. Wanner, D. Boger and S. Walker, Mol. Biosyst., 2006, 2, 69-76.
    • M. C. Lo, H. Men, A. Branstrom, J. Helm, N. Yao, R. Goldman and S. Walker, J. Am. Chem. Soc., 2000, 122, 3540-3541.
    • J. S. Helm, L. Chen and S. Walker, J. Am. Chem. Soc., 2002, 124, 13970-13971.
    • C. C. Johnson, S. Taylor, P. Pitsakis, P. May and M. E. Levison, Antimicrob. Agents Chemother., 1992, 36, 2342-2345.
    • W. Brumfitt, P. A. C. Maple and J. M. T. Hamiltonmiller, Drugs under Experimental and Clinical Research, 1990, 16, 377-383.
    • T. Pelaez, L. Alcala, R. Alonso, A. Martin-Lopez, V. Garcia-Arias, M. Marin and E. Bouza, Antimicrob. Agents Chemother., 2005, 49, 1157- 1159.
    • J. W. Schmidt, A. Greenough, M. Burns, A. E. Luteran and D. G. McCafferty, FEMS Microbiol. Lett., 2010, 310, 104-111.
    • J. S. Helm, Y. N. Hu, L. Chen, B. Gross and S. Walker, J. Am. Chem. Soc., 2003, 125, 11168-11169.
    • Y. Hu, J. S. Heim, L. Chen, C. Ginsberg, B. Gross, B. Kraybill, K. Tiyanont, X. Fang, T. Wu and S. Walker, Chemistry & Biology, 2004, 11, 703-711.
    • A. E. Trunkfield, S. S. Gurcha, G. S. Besra and T. D. H. Bugg, Bioorg. Med. Chem., 2010, 18, 2651-2663.
    • J. J. Li and T. D. H. Bugg, Chem. Commun., 2004, 182-183.
    • D. Patin, H. Barreteau, G. Auger, S. Magnet, M. Crouvoisier, A. Bouhss, T. Touze, M. Arthur, D. Mengin-Lecreulx and D. Blanot, Biochimie, 2012, 94, 985-990.
    • T. Touze, H. Barreteau, M. El Ghachi, A. Bouhss, A. BarneoudArnoulet, D. Patin, E. Sacco, D. Blanot, M. Arthur, D. Duche, R. Lloubes and D. Mengin-Lecreulx, Biochem. Soc. Trans., 2012, 40, 1522-1527.
    • E. Breukink, H. E. van Heusden, P. J. Vollmerhaus, E. Swiezewska, L. Brunner, S. Walker, A. J. R. Heck and B. de Kruijff, J. Biol. Chem., 2003, 278, 19898-19903.
    • T. Schneider, T. Kruse, R. Wimmer, I. Wiedemann, V. Sass, U. Pag, A. Jansen, A. K. Nielsen, P. H. Mygind, D. S. Ravents, S. Neve, B. Ravn, A. Bonvin, L. De Maria, A. S. Andersen, L. K. Gammelgaard, H. G. Sahl and H. H. Kristensen, Science, 2010, 328, 1168-1172.
    • K. Mandal, B. L. Pentelute, V. Tereshko, V. Thammavongsa, O. Schneewind, A. A. Kossiakoff and S. B. H. Kent, Protein Sci., 2009, 18, 1146-1154.
    • A. J. Lloyd, A. M. Gilbey, A. M. Blewett, G. De Pascale, A. El Zoeiby, R. C. Levesque, A. C. Catherwood, A. Tomasz, T. D. H. Bugg, D. I. Roper and C. G. Dowson, J. Biol. Chem., 2008, 283, 6402-6417.
    • G. De Pascale, A. J. Lloyd, J. A. Schouten, A. M. Gilbey, D. I. Roper, C. G. Dowson and T. D. H. Bugg, J. Biol. Chem., 2008, 283, 34571- 34579.
    • S. R. Filipe and A. Tomasz, Proc. Natl. Acad. Sci. U.S.A., 2000, 97, 4891-4896.
    • U. Kopp, M. Roos, J. Wecke and H. Labischinski, Microbial Drug Resistance, 1996, 2, 29-41.
    • E. Cressina, A. J. Lloyd, G. De Pascale, D. I. Roper, C. G. Dowson and T. D. H. Bugg, Bioorg. Med. Chem. Lett., 2007, 17, 4654-4656.
    • M. Chemama, M. Fonvielle, R. Villet, M. Arthur, J.-M. Valery and M. Etheve-Quelquejeu, J. Am. Chem. Soc., 2007, 129, 12642-12643.
    • V. van Dam, R. Sijbrandi, M. Kol, E. Swiezewska, B. de Kruijff and E. Breukink, Mol. Microbiol., 2007, 64, 1105-1114.
    • A. L. Lovering, L. H. de Castro, D. Lim and N. C. J. Strynadka, Science, 2007, 315, 1402-1405.
    • R. C. Goldman, E. R. Baizman, A. A. Branstrom and C. B. Longley, Bioorg. Med. Chem. Lett., 2000, 10, 2251-2254.
    • Y. Van Heijenoort, M. Derrien and J. Van Heijenoort, FEBS Lett., 1978, 89, 141-144.
    • H.-W. Shih, K.-T. Chen, S.-K. Chen, C.-Y. Huang, T.-J. R. Cheng, C. Ma, C.-H. Wong and W.-C. Cheng, Org. Biomol. Chem., 2010, 8, 2586- 2593.
    • E. R. Baizman, A. A. Branstrom, C. B. Longley, N. Allanson, M. J. Sofia, D. Gange and R. C. Goldman, Microbiology-Uk, 2000, 146, 3129-3140.
    • K. Hiramatsu and H. Hanaki, Curr. Opin. Infect. Dis., 1998, 11, 653- 658.
    • L. Z. Cui, A. Iwamoto, J. Q. Lian, H. M. Neoh, T. Maruyama, Y. Horikawa and K. Hiramatsu, Antimicrob. Agents Chemother., 2006, 50, 428-438.
    • L. Chen, D. Walker, B. Sun, Y. Hu, S. Walker and D. Kahne, Proc. Natl. Acad. Sci. U.S.A., 2003, 100, 5658-5663.
    • R. S. Roy, P. Yang, S. Kodali, Y. S. Xiong, R. M. Kim, P. R. Griffin, H. R. Onishi, J. Kohler, L. L. Silver and K. Chapman, Chemistry & Biology, 2001, 8, 1095-1106.
    • B. Glauner, J. V. Holtje and U. Schwarz, J. Biol. Chem., 1988, 263, 10088-10095.
    • Y. Michelbriand, Comptes Rendus Des Seances De La Societe De Biologie Et De Ses Filiales, 1978, 172, 609-627.
    • D. F. J. Brown and P. E. Reynolds, FEBS Lett., 1980, 122, 275-278.
    • D. A. Leonard, R. A. Bonomo and R. A. Powers, Acc. Chem. Res., 2013, 46, 2407-2415.
    • J. C. J. Barna and D. H. Williams, Annu. Rev. Microbiol., 1984, 38, 339-357.
    • V. Vinatier, C. B. Blakey, D. Braddick, B. R. G. Johnson, S. D. Evans and T. D. H. Bugg, Chem. Commun., 2009, 4037-4039.
    • J. S. Anderson and J. L. Strominger, Biochem. Biophys. Res. Commun., 1965, 21, 516-521.
    • W. G. Struve and F. C. Neuhaus, Biochem. Biophys. Res. Commun., 1965, 18, 6-12.
    • W. G. Struve, R. K. Sinha and F. C. Neuhaus, Biochemistry, 1966, 5, 82-&.
    • M. Ikeda, M. Wachi, H. K. Jung, F. Ishino and M. Matsuhashi, J. Bacteriol, 1991, 173, 1021-1026.
    • J. M. C. Mondego, J. L. Simoes-Araujo, D. E. de Oliveira and M. Alves-Ferreira, Plant Science, 2003, 164, 323-331.
    • D. S. Boyle and W. D. Donachie, J. Bacteriol, 1998, 180, 6429-6432.
    • J. A. Thanassi, S. L. Hartman-Neumann, T. J. Dougherty, B. A. Dougherty and M. J. Pucci, Nucleic Acids Res., 2002, 30, 3152-3162.
    • Y. Van Heijenoort, M. Gomez, M. Derrien, J. Ayala and J. Van Heijenoort, J. Bacteriol, 1992, 174, 3549-3557.
    • B. Soldo, V. Lazarevic and D. Karamata, Microbiology-Sgm, 2002, 148, 2079-2087.
    • J. Lehrer, K. A. Vigeant, L. D. Tatar and M. A. Valvano, J. Bacteriol, 2007, 189, 2618-2628.
    • M. S. Anderson, S. S. Eveland and N. P. J. Price, FEMS Microbiol. Lett., 2000, 191, 169-175.
    • T. D. H. Bugg and P. E. Brandish, FEMS Microbiol. Lett., 1994, 119, 255-262.
    • M. A. Lehrman, Glycobiology, 1994, 4, 768-771.
    • A. R. Dal Nogare, N. Dan and M. A. Lehrman, Glycobiology, 1998, 8, 625-632.
    • M. G. J. Heydanek and F. C. Neuhaus, Biochemistry, 1969, 8, 1474- 1481.
    • A. Bouhss, D. Mengin-Lecreulx, D. Le Beller and J. van Heijenoort, Mol. Microbiol., 1999, 34, 576-585.
    • A. J. Lloyd, P. E. Brandish, A. M. Gilbey and T. D. H. Bugg, J. Bacteriol, 2004, 186, 1747-1757.
    • M. G. J. Heydanek, W. G. Struve and F. C. Neuhaus, Biochemistry, 1969, 8, 1214-1221.
    • M. G. Heydanek, R. Linzer, D. D. Pless and F. C. Neuhaus, Biochemistry, 1970, 9, 3618-&.
    • A. Bouhss, M. Crouvoisier, D. Blanot and D. Mengin-Lecreulx, J. Biol. Chem., 2004, 279, 29974-29980.
    • P. F. Marrero, C. D. Poulter and P. A. Edwards, J. Biol. Chem., 1992, 267, 21873-21878.
    • D. D. Pless and F. C. Neuhaus, J. Biol. Chem., 1973, 248, 1568-1576.
    • B. Al-Dabbagh, X. Henry, M. El Ghachi, G. Auger, D. Blanot, C. Parquet, D. Mengin-Lecreulx and A. Bouhss, Biochemistry, 2008, 47, 8919-8928.
    • B. C. Chung, J. Zhao, R. A. Gillespie, D.-Y. Kwon, Z. Guan, J. Hong, P. Zhou and S.-Y. Lee, Science, 2013, 341, 1012-1016.
    • A. O. Amer and M. A. Valvano, Microbiology-Sgm, 2001, 147, 3015- 3025.
    • Y. Ma, D. Muench, T. Schneider, H.-G. Sahl, A. Bouhss, U. Ghoshdastider, J. Wang, V. Doetsch, X. Wang and F. Bernhard, J. Biol. Chem., 2011, 286, 38844-38853.
    • W. P. Hammes and F. C. Neuhaus, J. Biol. Chem., 1974, 249, 3140- 3150.
    • W. A. Weppner and F. C. Neuhaus, J. Biol. Chem., 1977, 252, 2296- 2303.
    • P. E. Brandish, M. K. Burnham, J. T. Lonsdale, R. Southgate, M. Inukai and T. D. H. Bugg, J. Biol. Chem., 1996, 271, 7609-7614.
    • P. E. Brandish, K. Kimura, M. Inukai, R. Southgate, J. T. Lonsdale and T. D. H. Bugg, Antimicrob. Agents Chemother., 1996, 40, 1640-1644.
    • T. Stachyra, C. Dini, P. Ferrari, A. Bouhss, J. van Heijenoort, D. Mengin-Lecreulx, D. Blanot, J. Biton and D. Le Beller, Antimicrob. Agents Chemother., 2004, 48, 897-902.
    • S. Bagga, PhD thesis, University of Warwick, 2004.
    • J. A. Schouten, S. Bagga, A. J. Lloyd, G. Pascale, C. G. Dowson, D. I. Roper and T. D. H. Bugg, Mol. Biosystems, 2006, 2, 484-491.
    • S. M. Solapure, P. Raphael, C. N. Gayathri, S. P. Barde, B. Chandrakala, K. S. Das and S. M. de Sousa, J. Biomol. Screen., 2005, 10, 149-156.
    • A. A. Branstrom, S. Midha, C. B. Longley, K. Han, E. R. Baizman and H. R. Axelrod, Anal. Biochem., 2000, 280, 315-319.
    • S. Ravishankar, V. P. Kumar, B. Chandrakala, R. K. Jha, S. M. Solapure and S. M. de Sousa, Antimicrob. Agents Chemother., 2005, 49, 1410- 1418.
    • Takatsuk.A, K. Arima and G. Tamura, J. Antibiot., 1971, 24, 215-&.
    • Takatsuk.A and G. Tamura, J. Antibiot., 1971, 24, 224-&.
    • A. Banerjee, J.-Y. Lang, M.-C. Hung, K. Sengupta, S. K. Banerjee, K. Baksi and D. K. Banerjee, J. Biol. Chem., 2011, 286, 29127-29138.
    • A. Heifetz, R. W. Keenan and A. D. Elbein, Biochemistry, 1979, 18, 2186-2192.
    • A. G. Myers, D. Y. Gin and D. H. Rogers, J. Am. Chem. Soc., 1994, 116, 4697-4718.
    • F. J. Wyszynski, S. S. Lee, T. Yabe, H. Wang, J. P. Gomez-Escribano, M. J. Bibb, S. J. Lee, G. J. Davies and B. G. Davis, Nature Chemistry, 2012, 4, 539-546.
    • M. Winn, R. J. M. Goss, K. Kimura and T. D. H. Bugg, Nat. Prod. Rep., 2010, 27, 279-304.
    • M. Inukai, F. Isono, S. Takahashi, R. Enokita, Y. Sakaida and T. Haneishi, J. Antibiot., 1989, 42, 662-666.
    • F. Isono, M. Inukai, S. Takahashi, T. Haneishi, T. Kinoshita and H. Kuwano, J. Antibiot., 1989, 42, 667-673.
    • F. Isono, T. Katayama, M. Inukai and T. Haneishi, J. Antibiot., 1989, 42, 674-679.
    • F. Isono and M. Inukai, Antimicrob. Agents Chemother., 1991, 35, 234- 236.
    • M. Inukai, F. Isono and A. Takatsuki, Antimicrob. Agents Chemother., 1993, 37, 980-983.
    • F. Isono, Y. Sakaida, S. Takahashi, T. Kinoshita, T. Nakamura and M. Inukai, J. Antibiot., 1993, 46, 1203-1207.
    • J. P. Karwowski, M. Jackson, R. J. Theriault, R. H. Chen, G. J. Barlow and M. L. Maus, J. Antibiot., 1989, 42, 506-511.
    • R. H. Chen, A. M. Buko, D. N. Whittern and J. B. McAlpine, J. Antibiot., 1989, 42, 512-520.
    • P. B. Fernandes, R. N. Swanson, D. J. Hardy, C. W. Hanson, L. Coen, R. R. Rasmussen and R. H. Chen, J. Antibiot., 1989, 42, 521-526.
    • R. M. Fronko, J. C. Lee, J. G. Galazzo, S. Chamberland, F. Malouin and M. D. Lee, J. Antibiot., 2000, 53, 1405-1410.
    • V. J. Lee and S. J. Hecker, Med. Res. Rev., 1999, 19, 521-542.
    • C. G. Boojamra, R. C. Lemoine, J. C. Lee, R. Leger, K. A. Stein, N. G. Vernier, A. Magon, O. Lomovskaya, P. K. Martin, S. Chamberland, M. D. Lee, S. J. Hecker and V. J. Lee, J. Am. Chem. Soc., 2001, 123, 870- 874.
    • W. Zhang, B. Ostash and C. T. Walsh, Proc. Natl. Acad. Sci. U.S.A., 2010, 107, 16828-16833.
    • S. Chatterjee, S. R. Nadkarni, E. K. S. Vijayakumar, M. V. Patel, B. N. Ganguli, H. W. Fehlhaber and L. Vertesy, J. Antibiot., 1994, 47, 595- 598.
    • Y. Xie, R. Chen, S. Si, C. Sun and H. Xu, J. Antibiot., 2007, 60, 158- 161.
    • Y. Xie, H. Xu, S. Si, C. Sun and R. Chen, J. Antibiot., 2008, 61, 237- 240.
    • B. Gust, K. Eitel and X. Tang, Biol. Chem., 2013, 394, 251-259.
    • S. Siebenberg, L. Kaysser, E. Wemakor, L. Heide, B. Gust and B. Kammerer, Rapid Commun. Mass Spectrom., 2011, 25, 495-502.
    • K. Isono, M. Uramoto, H. Kusakabe, K. I. Kimura, K. Izaki, C. C. Nelson and J. A. McCloskey, J. Antibiot., 1985, 38, 1617-1621.
    • M. Muroi, K. I. Kimura, H. Osada, M. Inukai and A. Takatsuki, J. Antibiot., 1997, 50, 103-104.
    • L. Kaysser, L. Lutsch, S. Siebenberg, E. Wemakor, B. Kammerer and B. Gust, J. Biol. Chem., 2009, 284, 14987-14996.
    • L. Kaysser, S. Siebenberg, B. Kammerer and B. Gust, Chembiochem, 2010, 11, 191-196.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

    Title Year Similarity

    Inhibition of phospho-MurNAc-pentapeptide translocase (MraY) by nucleoside natural product antibiotics, bacteriophage <phi>X174 lysis protein E, and cationic antibacterial peptides

    201678
    78%

    Genetic Analysis of MraY Inhibition by the φX174 Protein E

    200891
    91%

    Assessing HTS Performance Using BioAssay Ontology: Screening and Analysis of a Bacterial Phospho-N-Acetylmuramoyl-Pentapeptide Translocase Campaign

    201482
    82%

    mraY Is an Essential Gene for Cell Growth in Escherichia coli

    199894
    94%

    Experiments with MRAI time stepping schemes on a distributed memory parallel environment

    199886
    86%

    Utplacering av geografiskt distribuerade applikationer baserat på tidigare routing information

    201773
    73%

    Diagnostik und Evaluation der Entzündungsschwere chronisch entzündlicher Darmerkrankungen durch Magnetresonanztomographie

    200472
    72%

    Effect of MRAI Timers on BGP Convergence Times

    201387
    87%

    Fluorescence Detection-Based Functional Assay for High-Throughput Screening for MraY

    200490
    90%

    Lipid Requirements for the Enzymatic Activity of MraY Translocases and in Vitro Reconstitution of the Lipid II Synthesis Pathway*

    201587
    87%

    Ligand Shaping in Induced Fit Docking of MraY Inhibitors. Polynomial Discriminant and Laplacian Operator as Biological Activity Descriptors

    201794
    94%

    Purification and Functional Characterization of the ϕX174 Lysis Protein E†

    200982
    82%

    Towards novel antibacterial development : from peptidoglycan to lipoprotein biogenesis

    201691
    91%

    Approximated implicit time-stepping schemes in a distributed memory parallel environment

    199884
    84%

    SAFETY CRITERION IN INTER-DOMAIN ROUTING PROTOCOL WITH PSEUDO RENEWALS

    201372
    72%

    Total synthesis of dansylated Park's nucleotide for high-throughput MraY assays.

    201690
    90%

Share - Bookmark

Cite this article