LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hart, Sarah; Rowley, P.J. (2010)
Publisher: Birkbeck College, University of London
Languages: English
Types: Article
Subjects: ems

Classified by OpenAIRE into

arxiv: Mathematics::Representation Theory, Mathematics::Group Theory, Mathematics::Quantum Algebra
The maximal lengths of elements in each of the conjugacy classes of Coxeter groups of types $B_n$, $D_n$ and $E_6$ are determined. Additionally, representative elements are given that attain these maximal lengths.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Cannon, J.J. and Playoust, C. An Introduction to Algebraic Programming with Magma [draft], Springer-Verlag (1997).
    • [2] Carter, R.W. Conjugacy Classes in the Weyl Group, Compositio. Math. 25, Facs. 1 (1972), 1{59.
    • [3] Carter, R. W. Finite groups of Lie type. Conjugacy classes and complex characters Wiley Classics Library. John Wiley and Sons, Ltd., Chichester, 1993. 544 pp.
    • [4] Cauchy, A. Exercises d'analyse et de physique mathematique, 1844.
    • [5] Geck, M., Kim, S. and Pfei®er, G. Minimal length elements in twisted conjugacy classes of ¯nite Coxeter groups, J. Algebra 229 (2000), no. 2, 570{600.
    • [6] Geck, M. and Pfei®er, G. Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, LMS Monographs, New Series 21, (2000).
    • [7] Humphreys, J.E. Re°ection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, 29 (1990).
    • [8] Kim, S. Mots de longueur maximale dans une classe de conjugaison d'un groupe symtrique, vu comme groupe de Coxeter (French) [Words of maximal length in a conjugacy class of a symmetric group, viewed as a Coxeter group], C. R. Acad. Sci. Paris Sr. I Math. 327 (1998), no. 7, 617{622.
    • [9] Perkins, S. B. and Rowley, P. J. Minimal and maximal length involutions in ¯nite Coxeter groups, Comm. Algebra 30 (2002), no. 3, 1273{1292.
    • [10] Perkins, S. B. and Rowley, P. J. Lengths of involutions in Coxeter groups, J. Lie Theory 14 (2004), no. 1, 69{71.
    • [11] Specht, W. Darstellungstheorie der Hyperoktaedergruppe, Math. Z. 42 (1937), 629 { 640.
    • [12] Young, A. The collected papers of Alfred Young, 1873 { 1940. With a foreword by G. de B. Robinson and a biography by H. W. Turnbull, Mathematical Expositions, 21, University of Toronto Press, Toronto, 1977.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article