LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Sangiorgi, F; Brumsack, H. J.; Willard, D. A.; Schouten, S; Stickley, C. E.; O'Regan, Matthew; Reichart, G. J; Damste, J. S.S; Brinkhuis, H. (2008)
Publisher: American Geophysical Union
Languages: English
Types: Article
Subjects: QE
The Cenozoic record of the Lomonosov Ridge (central Arctic Ocean) recovered during Integrated Ocean\ud Drilling Program (IODP) Expedition 302 revealed an unexpected 26 Ma hiatus, separating middle Eocene\ud (�44.4 Ma) from lower Miocene sediments (�18.2 Ma). To elucidate the nature of this unconformity, we\ud performed a multiproxy palynological (dinoflagellate cysts, pollen, and spores), micropaleontological\ud (siliceous microfossils), inorganic, and organic (Tetra Ether Index of lipids with 86 carbon atoms (TEX86)\ud and Branched and Isoprenoid Tetraether (BIT)) geochemical analysis of the sediments from �5 m below to\ud �7 m above the hiatus. Four main paleoenvironmental phases (A–D) are recognized in the sediments\ud encompassing the unconformity, two below (A–B) and two above (C–D): (A) Below the hiatus, proxies show\ud relatively warm temperatures, with Sea Surface Temperatures (TEX86-derived SSTs) of about 8�C and high\ud fresh to brackish water influence. (B) Approaching the hiatus, proxies indicate a cooling trend (TEX86-derived\ud SSTs of �5�C), increased freshwater influence, and progressive shoaling of the Lomonosov Ridge drilling\ud site, located close to or at sea level. (C) The interval directly above the unconformity contains sparse reworked\ud Cretaceous to Oligocene dinoflagellate cysts. Sediments were deposited in a relatively shallow, restricted\ud marine environment. Proxies show the simultaneous influence of both fresh and marine waters, with\ud alternating oxic and anoxic conditions. Pollen indicates a relatively cold climate. Intriguingly, TEX86-derived\ud SSTs are unexpectedly high, �15–19�C. Such warm surface waters may be partially explained by the\ud ingression of warmer North Atlantic waters after the opening of the Fram Strait during the early Miocene. (D)\ud Sediments of the uppermost interval indicate a phase of extreme oxic conditions, and a well-ventilated\ud environment, which occurred after the complete opening of the Fram Strait. Importantly, and in contrast with\ud classical postrifting thermal subsidence models for passive margins, our data suggest that sediment erosion\ud and/or nondeposition that generated the hiatus was likely due to a progressive shoaling of the Lomonosov\ud Ridge. A shallow water setting both before and after the hiatus suggests that the Lomonosov Ridge remained\ud at or near sea level for the duration of the gap in the sedimentary record. Interacting sea level changes and/or\ud tectonic activity (possibly uplift) must be invoked as possible causes for such a long hiatus.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Backman, J., et al. (2008), Age model and core-seismic integration for the Cenozoic Arctic Coring Expedition sediments from the Lomonosov Ridge, Paleoceanography, doi:10.1029/2007PA001476, in press.
    • Bohme, M. (2003), The Miocene Climatic Optimum: Evidence from ectothermic vertebrates of central Europe, Palaeogeogr. Palaeoclimatol. Palaeoecol., 195, 389 - 401.
    • Bre´he´ret, J. G., and H. J. Brumsack (2000), Barite concretions as evidence of pauses in sedimentation in the Marnes Bleues Formation of the Vocontian Basin (SE France), Sediment Geol., 130, 205 - 228.
    • Brinkhuis, H., et al. (2006), Episodic fresh surface water in the Eocene Arctic Ocean, Nature, 441, 606 - 609.
    • Cande, S. C., and D. V. Kent (1995), Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic, J. Geophys. Res., 100, 6093 - 6095.
    • Cloetingh, S., F. M. Gradstein, H. Kooi, A. C. Grant, and M. Kaminski (1990), Plate reorganization: A cause of rapid late Neogene subsidence and sedimentation around the North Altantic?, J. Geol. Soc. London, 147, 495 - 506.
    • Damassa, S. P. (1998), A Hole-Y alliance: Calciodinelloidean archeopyles in dinosporin cysts, Palynology, 22, 238.
    • Dellwig, O., J. Hinrichs, A. Hild, and H. J. Brumsack (2000), Changing sedimentation in tidal flat sediments of the southern North Sea from the Holocene to the present: A geochemical approach, J. Sea Res., 44, 195 - 208.
    • Dzinoridze, R. N., A. P. Jouse´, G. S. KorolevaGolikova, G. E. Kozlova, G. S. Nagaeva, M. G. Petrushevskaya, and N. I. Strelnikova (1978), Diatom and radiolarian Cenozoic stratigraphy, Norwegian Basin: DSDP Leg 38, Initial Rep. Deep Sea Drill. Proj., 38, 39, 40, 41, 289 - 427.
    • Eldrett, J. S., I. C. Harding, J. V. Firth, and A. P. Roberts (2004), Magnetostratigraphic calibration of Eocene - Oligocene dinoflagellate cyst biostratigraphy from the NorwegianGreenland Sea, Mar. Geol., 204, 91 - 127.
    • Expedition 302 Scientists (2006), Sites M0001 - M0004, in Proc. IODP, vol. 302, J. Backman et al., Integr. Ocean Drill. Program Manage. Int. Inc., Edinburgh, doi:10.2204/iodp. proc.302.104.2006.
    • Eyles, N. (1996), Passive margin uplift around the North Atlantic region and its role in Northern Hemisphere late Cenozoic glaciation, Geology, 24, 103 - 106.
    • Firth, J. V. (1996), Upper middle Eocene to Oligocene dinoflagellate biostratigraphy and assemblage variations in Hole 913B, Greenland Sea, Proc. Ocean Drill. Program Sci. Results, 151, 203 - 242.
    • Greenwood, D. R., and S. L. Wing (1995), Eocene continental climates and latitudinal temperature gradients, Geology, 23, 1044 - 1048.
    • Greenwood, D. R., S. B. Archibald, R. W. Mathewes, and P. T. Moss (2005), Fossil biotas from the Okanagan Highlands, southern British Columbia and northeastern Washington State: Climates and ecosystems across an Eocene landscape, Can. J. Earth Sci., 42, 167 - 185.
    • Hopmans, E. C., S. Schouten, R. D. Pancost, M. J. T. van der Meer, and J. S. Sinninghe Damste´ (2000), Analysis of intact tetraether lipids in archaeal cell material and sediments using high performance liquid chromatography/atmospheric pressure ionization mass spectrometry, Rapid Commun. Mass Spectrom., 14, 585 - 589.
    • Hopmans, E. C., J. W. H. Weijers, E. Schefuß, L. Herfort, J. S. Sinninghe Damste´, and S. Schouten (2004), A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids, Earth Planet. Sci. Lett., 224, 107 - 116.
    • Huckriede, H., and D. Meischner (1996), Origin and environment of manganese-rich sediments within black-shale basins, Geochim. Cosmochim. Acta, 60, 1399 - 1413.
    • Huguet, C. (2007), TEX86 paleothermometry: Proxy validation and application in marine sediments, Ph.D. thesis, Univ. of Utrecht, Utrecht.
    • Iverson, L. R., A. M. Prasad, B. J. Hale, and E. K. Sutherland (1999), Atlas of current and potential future distributions of common trees of the eastern United States, Gen. Tech. Rep. NE-265, 245 pp., Northeast. Res. Sta., U.S. For. Serv., Dept. of Agricul., Newtown Square, Pa.
    • Jacobson, D. M., and D. M. Anderson (1986), Thecate heterotrophic dinoflagellates: Feeding behaviour and mechanics, J. Phycol., 22, 249 - 258.
    • Jahren, A. H., and L. S. L. Sternberg (2003), Humidity estimate for the middle Eocene Arctic rain forest, Geology, 31(5), 463 - 466.
    • Jakobsson, M., et al. (2007), The early Miocene onset of a ventilated circulation regime in the Arctic Ocean, Nature, 447, 986 - 990.
    • Japsen, P., J. M. Bonow, P. F. Green, J. A. Chalmers, and K. Lidmar-Bergstrom (2006), Elevated, passive continental margins: Longterm highs or Neogene uplifts? New evidence from west Greenland, Earth Planet. Sci. Lett., 248, 330 - 339.
    • Kaminski, M. A. (2007), Faunal constraints for the timing of the Fram Strait opening: The record of Miocene deep-water agglutinated foraminifera from IODP Hole M0002A, Lomonosov Ridge, IODP UK Newsl., 32, 18 - 20.
    • Kaminski, M. A., L. Silye, and S. Kender (2006), Miocene deep-water agglutinated foraminifera from ODP Hole 909c: Implications for the paleoceanography of the Fram Strait Area, Greenland Sea, Micropaleontology, 51, 373 - 403.
    • Lourens, L. J., F. J. Hilgen, N. J. Shackleton, J. Laskar, and D. Wilson (2005), The Neogene Period, in A Geological Time Scale 2004, edited by F. M. Gradstein et al., pp. 409 - 440, Cambridge Univ. Press, Cambridge.
    • Marret, F., and K. F. Zonneveld (2003), Atlas of modern organic-walled dinoflagellate cyst distribution, Rev. Palaeobot. Palynol., 125, 1 - 200.
    • McKenzie, D. P. (1978), Some remarks on the development of sedimentary basins, Earth Planet. Sci. Lett., 40, 25 - 32.
    • Moore, T. C., et al. (2006), Sedimentation and subsidence history of the Lomonosov Ridge, in Proceedings of the Integrated Ocean Drilling Program, vol. 302, edited by J. Backman et al., Integrated Ocean Drill. Program Manage. Int., Inc., Edinburgh, doi:10.2204/iodp. proc.302.105.2006.
    • Moran, K., et al. (2006), The Cenozoic palaeoenvironment of the Arctic Ocean, Nature, 441, 601 - 605.
    • Mosbrugger, V., T. Utescher, and D. L. Dilcher (2005), Cenozoic continental climatic evolution of central Europe, Proc. Natl. Acad. Sci. U.S.A., 102, 14,964 - 14,969.
    • Mudie, P. J. (1980), Palynology of later Quaternary marine sediments, eastern Canada, Ph.D. thesis, 638 pp., Dalhousie Univ., Halifax, Nova Scotia, Canada.
    • Mudie, P. J. (1982), Pollen distribution in recent marine sediments, eastern Canada, Canadian J. Earth Sci., 19, 729 - 747.
    • Pokrovsky, O. S., and J. Schott (2002), Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries (NW Russia), Chem. Geol., 190, 141 - 179.
    • Rohrman, M., and P. A. van der Beek (1996), Cenozoic post-rift domal uplift of North Atlantic margins: An asthenospheric diapirism model, Geology, 24, 901 - 904.
    • Sangiorgi, F., H. Brinkhuis, and S. P. Damassa (2008), Arcticacysta: A new organic-walled dinoflagellate cyst genus from the early Miocene? of the central Arctic Ocean, Micropaleontology, in press.
    • Schnetger, B. (1997), Trace element analysis of sediments by HR-ICP-MS using low and medium resolution and different acid digestions, Fresenius J. Anal. Chem., 359, 468 - 472.
    • Schouten, S., E. C. Hopmans, E. Schefuß, and J. S. Sinninghe Damste´ (2002), Distributional variations in marine crenarchaeotal membrane lipids: A new organic proxy for reconstructing ancient sea water temperatures?, Earth Planet. Sci. Lett., 204, 265 - 274.
    • Schouten, S., C. Huguet, E. C. Hopmans, and J. S. Sinninghe Damste´ (2007), Improved analytical methodology of the TEX86 paleothermometry by high performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry, Anal. Chem., 79, 2940 - 2944.
    • Schrader, H.-J., and J. Fenner (1976), Norwegian Sea Cenozoic diatom biostratigraphy and taxonomy, Initial Rep. Deep Sea Drill. Proj., 38, 921 - 1099.
    • Sluijs, A., H. Brinkhuis, C. E. Stickley, J. Warnaar, G. L. Williams, and M. Fuller (2003), Dinoflagellate cysts from the Eocene/Oligocene transition in the Southern Ocean: Results from ODP Leg 189, in, Proc. Ocean Drill. Program, Sci. Results, 1 - 42.
    • Sluijs, A., J. Pross, and H. Brinkhuis (2005), From greenhouse to icehouse: Organicwalled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene, Earth Sci. Rev., 68, 281 - 315.
    • Sluijs, A., et al. (2006), Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum, Nature, 441, 610 - 613.
    • Sluijs, A., U. Ro¨hl, S. Schouten, H.-J. Brumsack, F. Sangiorgi, J. S. Sinninghe Damste´, and H. Brinkhuis (2008), Arctic late Paleocene - early Eocene paleoenvironments with special emphasis on the Paleocene-Eocene thermal maximum (Lomonosov Ridge, Integrated Ocean Drilling Program Expedition 302), 23, PA1S11, doi:10.1029/2007PA001495.
    • Stein, R., B. Boucsein, and H. Meyer (2006), Anoxia and high primary production in the Paleogene central Arctic Ocean: First detailed records from Lomonosov Ridge, Geophys. Res. Lett., 33, L18606, doi:10.1029/2006GL026776.
    • Stickley, C., N. Koc¸, H.-J. Brumsack, R. Jordan, and I. Suto (2008), A siliceous microfossil view of middle Eocene Arctic paleoenvironments: A window of biosilica production and preservation, Paleoceanography, doi:10.1029/ 2007PA001485, in press.
    • Tsikalas, F., J. I. Faleide, O. Eldholm, and J. Wilson (2005), Late Mesozoic-Cenozoic structural and stratigraphic correlations between the conjugate mid-Norway and NE Greenland continental margins, in Petroleum Geology: North-West Europe and Global Perspectives: Proceedings of the 6th Petroleum Geology Conference, vol. 2, edited by A. G. Dore´ and B. Vining, pp. 785 - 801, Geol. Soc., London.
    • Wedepohl, K. H. (1971), Environmental influence on the chemical composition of shales and clays, in Physics and Chemistry of the Earth, vol. 8, edited by L. H. Ahrens et al., pp. 305 - 333, Pergamon, Oxford.
    • Williams, G. L., and S. B. Manum (1999), Oligocene-early Miocene dinocyst stratigraphy of Hole 985A (Norwegian Sea), Proc. Ocean Drill. Program Sci. Results, 162, 99 - 109.
    • Wood, G. D., A. M. Gabriel, and J. C. Lawson (1996), Palynological techniques: Processing and microscopy, in Palynology: Principles and Applications, vol. 1, edited by J. Jansonius and D. C. McGregor, chap. 3, pp. 29 - 50, Am. Assoc. of Stratigr. Palynol. Found., Dallas, Tex.
    • Zachos, J., M. Pagani, L. Sloan, E. Thomas, and K. Billups (2001), Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686 - 693.
    • H. Brinkhuis and F. Sangiorgi, Laboratory of Palaeobotany and Palynology, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, Netherlands. H.-J. Brumsack, Institute for Chemistry and Biology of the Marine Environment (ICBM), Oldenburg University, P.O. Box 2503, D-26111 Oldenburg, Germany. M. O'Regan, Graduate School of Oceanography University of Rhode Island, Narragansett, RI 02882, USA. G.-J. Reichart, Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, Netherlands. S. Schouten and J. S. Sinninghe Damste´, Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Biogeochemistry and Toxicology, P.O. Box 59, 1790 AB, Den Burg, Texel, Netherlands. C. E. Stickley, Norwegian Polar Institute, Polar Environmental Centre, N-9296 Tromsø, Norway. D. A. Willard, U.S. Geological Survey, 926A National Centre, Reston, VA 20192, USA.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article