Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Williams, Helen M.; Bizimis, Michael
Publisher: Elsevier
Journal: Earth and Planetary Science Letters
Languages: English
Types: Article
Subjects: Space and Planetary Science, Peridotite, Pyroxenite, Hawaii, Iron isotope, Earth and Planetary Sciences (miscellaneous), Geophysics, sub-05, Primitive mantle., Geochemistry and Petrology
Mineralogical variations in the Earth's mantle and the relative proportions of peridotitic versus enriched and potentially crustally-derived pyroxenitic domains within the mantle have important implications for mantle dynamics, magma generation, and the recycling of surface material back into the mantle. Here we present iron (Fe) stable isotope data (δ 57Fe, deviation in 57Fe/54Fe from the IRMM-014 standard in parts per thousand) for peridotite and garnet–pyroxenite xenoliths from Oahu, Hawaii and explore Fe isotopes as tracer of both peridotitic and pyroxenitic components in the source regions of oceanic basalts. The pyroxenites have δ 57Fe values that are heavy (0.10 to 0.27‰) relative to values for mid-ocean ridge and ocean island basalts (MORB; OIB; View the MathML source) and the primitive mantle (PM; View the MathML source). Pyroxenite δ 57Fe values are positively correlated with bulk pyroxenite titanium and heavy rare earth element (REE) abundances, which can be interpreted in terms of stable isotope fractionation during magmatic differentiation and pyroxene cumulate formation. In contrast, the peridotites have light δ 57Fe values (−0.34 to 0.14‰) that correlate negatively with degree of melt depletion and radiogenic hafnium isotopes, with the most depleted samples possessing the most radiogenic Hf isotope compositions and lightest δ 57Fe values. While these correlations are broadly consistent with a scenario of Fe isotope fractionation during partial melting, where isotopically heavy Fe is extracted into the melt phase, leaving behind low-δ 57Fe peridotite residues, the extent of isotopic variation is far greater than predicted by partial melting models. One possibility is derivation of the samples from a heterogeneous source containing both light-δ 57Fe (relative to PM) and heavy-δ 57Fe components. While pyroxenite is a viable explanation for the heavy-δ 57Fe component, the origin of the depleted light-δ 57Fe component is more difficult to explain, as melting models predict that even large (>30%) degrees of melt extraction do not generate strongly fractionated residues. Multiple phases of melt extraction or other processes, such as metasomatism, melt percolation or the assimilation of xenocrystic olivine with light δ 57Fe values may need to be invoked to explain these light δ 57Fe values; a caveat to this is that these processes must either preserve, or generate correlations between δ 57Fe and Hf isotopes. Published variations in δ 57Fe in mantle melting products, such as MORB and OIB, are also greater than predicted by melting models assuming derivation from δ 57Fe-homogeneous mantle. For example, OIB from the Society and Cook-Austral islands, which have radiogenic Pb and Sr isotope compositions indicative of recycled components such as subduction modified, low-Pb oceanic crust and terrigenous sediments have heavy mean δ 57Fe values (∼0.21‰) significantly distinct to those of other OIB and MORB, which could explained by the presence of heavy-δ57Fe pyroxenite cumulate or pyroxenitic melt components, whereas large degree partial melts, such as komatiites and boninites, display light Fe-isotopic compositions which may reflect sampling of refractory, light-δ57Fe mantle components. Iron stable isotopes may therefore provide a powerful new means of fingerprinting mineralogical variations within the Earth's mantle and identifying the mineralogy of depleted and enriched components within the source regions of volcanic rocks.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Allègre, C.J., Turcotte, D.L., 1986. Implications of a two component marble-cake mantle. Nature 323, 123-127.
    • Asael, D., Tissot, F.L.H., Reinhard, C.T., Rouxel, O., Dauphas, N., Lyons, T.W., Ponzevera, E., Liorzou, C., Chéron, S., 2013. Coupled molybdenum, iron and uranium stable isotopes as oceanic paleoredox proxies during the Paleoproterozoic Shunga Event. Chem. Geol. 362, 193-210.
    • Beard, B.L., Johnson, C.M., 2004. Inter-mineral Fe isotope variations in mantlederived rocks and implications for the Fe geochemical cycle. Geochim. Cosmochim. Acta 68, 4727-4743.
    • Beard, B.L., Johnson, C.M., Skulan, J.L., Nealson, K.H., Cox, L., Sun, H., 2003. Application of Fe isotopes to tracing the geochemical and biological cycling of Fe. Chem. Geol. 195, 87-117.
    • Bizimis, M., Sen, G., Salters, V.J.M., 2004. Hf-Nd isotope decoupling in the oceanic lithosphere: constraints from spinel peridotites from Oahu, Hawaii. Earth Planet. Sci. Lett. 217, 43-58.
    • Bizimis, M., Sen, G., Salters, V.J.M., Keshav, S., 2005. Hf-Nd-Sr isotope systematics of garnet pyroxenites from Salt Lake Crater, Oahu, Hawaii: evidence for a depleted component in Hawaiian volcanism. Geochim. Cosmochim. Acta 69, 2629-2646.
    • Bizimis, M., Griselin, M., Lassiter, J.C., Salters, V.J.M., Sen, G., 2007. Ancient recycled mantle lithosphere in the Hawaiian plume: osmium-hafnium isotopic evidence from peridotite mantle xenoliths. Earth Planet. Sci. Lett. 257, 259-273.
    • Bizimis, M., Salters, V.J., Garcia, M.O., Norman, M.D., 2013. The composition and distribution of the rejuvenated component across the Hawaiian plume: Hf-NdSr-Pb isotope systematics of Kaula lavas and pyroxenite xenoliths. Geochem. Geophys. Geosyst. 14, 4458-4478.
    • Burton, K.W., Cenki-Tok, B., Mokadem, F., Harvey, J., Gannoun, A., Alard, O., Parkinson, I.J., 2012. Unradiogenic lead in Earth's upper mantle. Nat. Geosci. 5, 570-573.
    • Chauvel, C., Hofmann, A.W., Vidal, P., 1992. HIMU EM - the French-Polynesian Connection. Earth Planet. Sci. Lett. 110, 99-119.
    • Clague, D.A., Frey, F.A., 1982. Petrology and trace-element geochemistry of the Honolulu Volcanics, Oahu - implications for the Oceanic Mantle Below Hawaii. J. Petrol. 23, 447-504.
    • Craddock, P.R., Warren, J.M., Dauphas, N., 2013. Abyssal peridotites reveal the nearchondritic Fe isotopic composition of the Earth. Earth Planet. Sci. Lett. 365, 63-76.
    • Dasgupta, R., Jackson, M.G., Lee, C.-T.A., 2010. Major element chemistry of ocean island basalts: conditions of mantle melting and heterogeneity of mantle source. Earth Planet. Sci. Lett. 289, 377-392.
    • Dauphas, N., Craddock, P.R., Asimow, P.D., Bennett, V.C., Nutman, A.P., Ohnenstetter, D., 2009. Iron isotopes may reveal the redox conditions of mantle melting from Archean to Present. Earth Planet. Sci. Lett. 288, 255-267.
    • Downes, H., 2007. Origin and significance of spinel and garnet pyroxenites in the shallow lithospheric mantle: ultramafic massifs in orogenic belts in Western Europe and NW Africa. Lithos 99, 1-24.
    • Elliott, T., Blichert-Toft, J., Heumann, A., Koetsier, G., Forjaz, V., 2007. The origin of enriched mantle beneath Sao Miguel, Azores. Geochim. Cosmochim. Acta 71, 219-240.
    • Gagnevin, D., Boyce, A., Barrie, C., Menuge, J., Blakeman, R., 2012. Zn, Fe and S isotope fractionation in a large hydrothermal system. Geochim. Cosmochim. Acta 88, 183-198.
    • Garcia, M.O., Swinnard, L., Weis, D., Greene, A.R., Tagami, T., Sano, H., Gandy, C.E., 2010. Petrology, Geochemistry and Geochronology of Kaua'i Lavas over 4.5 Myr: implications for the Origin of Rejuvenated Volcanism and the Evolution of the Hawaiian Plume. J. Petrol. 51, 1507-1540.
    • Gurenko, A.A., Sobolev, A.V., Hoernle, K.A., Hauff, F., Schmincke, H.-U., 2009. Enriched, HIMU-type peridotite and depleted recycled pyroxenite in the Canary plume: a mixed-up mantle. Earth Planet. Sci. Lett. 277, 514-524.
    • Hauri, E.H., 1996. Major-element variability in the Hawaiian mantle plume. Nature 382, 415-419.
    • Hauri, E.H., Lassiter, J.C., DePaolo, D.J., 1996. Osmium isotope systematics of drilled lavas from Mauna Loa, Hawaii. J. Geophys. Res., Solid Earth 1978-2012 (101), 11793-11806.
    • Heimann, A., Beard, B.L., Johnson, C.M., 2008. The role of volatile exsolution and subsolidus fluid/rock interactions in producing high Fe-56/Fe-54 ratios in siliceous igneous rocks. Geochim. Cosmochim. Acta 72, 4379-4396.
    • Hellebrand, E., Snow, J.E., Dick, H.J.B., Hofmann, A.W., 2001. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410, 677-681.
    • Herzberg, C., 2004. Partial crystallization of mid-ocean ridge basalts in the crust and mantle. J. Petrol. 45, 2389-2405.
    • Hibbert, K.E.J., Williams, H.M., Kerr, A.C., Puchtel, I.S., 2012. Iron isotopes in ancient and modern komatiites: evidence in support of an oxidised mantle from Archean to present. Earth Planet. Sci. Lett. 321, 198-207.
    • Hirschmann, M.M., Stolper, E.M., 1996. A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib. Mineral. Petrol. 124, 185-208.
    • Hofmann, A.W., 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219-229.
    • Hofmann, A.W., White, W.M., 1982. Mantle plumes from ancient oceanic-crust. Earth Planet. Sci. Lett. 57, 421-436.
    • Huang, S., Frey, F.A., 2005. Recycled oceanic crust in the Hawaiian Plume: evidence from temporal geochemical variations within the Koolau Shield. Contrib. Mineral. Petrol. 149, 556-575.
    • Humayun, M., Qin, L., Norman, M.D., 2004. Geochemical evidence for excess iron in the mantle beneath Hawaii. Science 306, 91-94.
    • Ionov, D.A., Hofmann, A.W., 2007. Depth of formation of subcontinental off-craton peridotites. Earth Planet. Sci. Lett. 261, 620-634.
    • Jackson, M.G., Dasgupta, R., 2008. Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth Planet. Sci. Lett. 276, 175-186.
    • Johnson, K.T., 1998. Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. Contrib. Mineral. Petrol. 133, 60-68.
    • Keshav, S., Sen, G., 2001. Majoritic garnets in Hawaiian xenoliths: preliminary results. Geophys. Res. Lett. 28, 3509-3512.
    • Keshav, S., Gudfinnsson, G.H., Sen, G., Fei, Y., 2004. High-pressure melting experiments on garnet clinopyroxenite and the alkalic to tholeiitic transition in oceanisland basalts. Earth Planet. Sci. Lett. 223, 365-379.
    • Keshav, S., Sen, G., Presnall, D.C., 2007. Garnet-bearing xenoliths from Salt Lake crater, Oahu, Hawaii; high-pressure fractional crystallization in the oceanic mantle. J. Petrol. 48, 1681-1724.
    • Klein, E.M., Langmuir, C.H., 1987. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J. Geophys. Res., Solid Earth 92, 8089-8115.
    • Kogiso, T., Hirschmann, M.M., 2006. Partial melting experiments of bimineralic eclogite and the role of recycled mafic oceanic crust in the genesis of ocean island basalts. Earth Planet. Sci. Lett. 249, 188-199.
    • Kogiso, T., Hirschmann, M.M., Frost, D.J., 2003. High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts. Earth Planet. Sci. Lett. 216, 603-617.
    • Lassiter, J.C., Hauri, E.H., 1998. Osmium-isotope variations in Hawaiian lavas: evidence for recycled oceanic lithosphere in the Hawaiian plume. Earth Planet. Sci. Lett. 164, 483-496.
    • Lazarov, M., Brey, G.P., Weyer, S., 2012. Evolution of the South African mantle-a case study of garnet peridotites from the Finsch diamond mine (Kaapvaal craton); Part 2: multiple depletion and re-enrichment processes. Lithos 154, 210-223.
    • Levasseur, S., Frank, M., Hein, J.R., Halliday, A.N., 2004. The global variation in the iron isotope composition of marine hydrogenetic ferromanganese deposits: implications for seawater chemistry? Earth Planet. Sci. Lett. 224, 91-105.
    • Li, X., Kind, R., Yuan, X., Wolbern, I., Hanka, W., 2004. Rejuvenation of the lithosphere by the Hawaiian plume. Nature 427, 827-829.
    • Liu, C.-Z., Snow, J.E., Hellebrand, E., Bruegmann, G., von der Handt, A., Buechl, A., Hofmann, A.W., 2008. Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean. Nature 452, 311-316.
    • Lundstrom, C., Sampson, D., Perfit, M., Gill, J., Williams, Q., 1999. Insights into mid-ocean ridge basalt petrogenesis: U-series disequilibria from the Siqueiros Transform, Lamont Seamounts, and East Pacific Rise. J. Geophys. Res. 104, 13035-13048.
    • McDonough, W.F., Sun, S.-S., 1995. The composition of the Earth. Chem. Geol. 120, 223-253.
    • Millet, M.-A., Baker, J.A., Payne, C.E., 2012. Ultra-precise stable Fe isotope measurements by high resolution multiple-collector inductively coupled plasma mass spectrometry with a 57Fe-58Fe double spike. Chem. Geol. 304, 18-25.
    • Niu, Y.L., O'Hara, M.J., 2003. Origin of ocean island basalts: a new perspective from petrology, geochemistry, and mineral physics considerations. J. Geophys. Res., Solid Earth 108.
    • Niu, Y., Collerson, K.D., Batiza, R., Wendt, J.I., Regelous, M., 1999. Origin of enriched, E-type mid-ocean ridge basalt at ridges far from mantle plumes: The East Pacific Rise at 11◦20 N. J. Geophys. Res. 104, 7067-7087.
    • Ozawa, A., Tagami, T., Garcia, M.O., 2005. Unspiked K-Ar dating of the Honolulu rejuvenated and Ko'olau shield volcanism on O'ahu, Hawai'i. Earth Planet. Sci. Lett. 232, 1-11.
    • Parman, S.W., Grove, T.L., 2004. Harzburgite melting with and without H2O: experimental data and predictive modeling. J. Geophys. Res. 109, B02201.
    • Pearce, J.A., Parkinson, I.J., 1993. Trace element models for mantle melting: application to volcanic arc petrogenesis. In: Magmatic Processes and Plate Tectonics. Geol. Soc. (Lond.) Spec. Publ. 76, 373-403.
    • Pertermann, M., Hirschmann, M.M., 2003. Partial melting experiments on a MORBlike pyroxenite between 2 and 3 GPa: constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. J. Geophys. Res., Solid Earth 108.
    • Pietruszka, A.J., Garcia, M.O., 1999. A rapid fluctuation in the mantle source and melting history of Kilauea Volcano inferred from the geochemistry of its historical summit lavas. J. Petrol. 40, 1321-1342.
    • Pilet, S., Baker, M.B., Stolper, E.M., 2008. Metasomatized lithosphere and the origin of alkaline lavas. Science 320, 916-919.
    • Poitrasson, F., Halliday, A.N., Lee, D.C., Levasseur, S., Teutsch, N., 2004. Iron isotope differences between Earth, Moon, Mars and Vesta as possible records of contrasted accretion mechanisms. Earth Planet. Sci. Lett. 223, 253-266.
    • Polyakov, V.B., Mineev, S.D., 2000. The use of Mössbauer spectroscopy in stable isotope geochemistry. Geochim. Cosmochim. Acta 64, 849-865.
    • Polyakov, V.B., Clayton, R.N., Horita, J., Mineev, S.D., 2007. Equilibrium iron isotope fractionation factors of minerals: reevaluation from the data of nuclear inelastic resonant X-ray scattering and Mossbauer spectroscopy. Geochim. Cosmochim. Acta 71, 3833-3846.
    • Prinzhofer, A., Lewin, E., Allegre, C., 1989. Stochastic melting of the marble cake mantle: evidence from local study of the East Pacific Rise at 12◦50 N. Earth Planet. Sci. Lett. 92, 189-206.
    • Prytulak, J., Elliott, T., 2007. TiO2 enrichment in ocean island basalts. Earth Planet. Sci. Lett. 263, 388-403.
    • Ren, Z.-Y., Shibata, T., Yoshikawa, M., Johnson, K.T., Takahashi, E., 2006. Isotope compositions of submarine Hana Ridge lavas, Haleakala volcano, Hawaii: implications for source compositions, melting process and the structure of the Hawaiian plume. J. Petrol. 47, 255-275.
    • Robinson, J., Wood, B., Blundy, J., 1998. The beginning of melting of fertile and depleted peridotite at 1.5 GPa. Earth Planet. Sci. Lett. 155, 97-111.
    • Rouxel, O., Dobbek, N., Ludden, J., Fouquet, Y., 2003. Iron isotope fractionation during oceanic crust alteration. Chem. Geol. 202, 155-182.
    • Salters, V.J., Stracke, A., 2004. Composition of the depleted mantle. Geochem. Geophys. Geosyst. 5.
    • Salters, V.J., Zindler, A., 1995. Extreme 176Hf/177Hf in the sub-oceanic mantle. Earth Planet. Sci. Lett. 129, 13-30.
    • Salters, V.J.M., Mallick, S., Hart, S.R., Langmuir, C.E., Stracke, A., 2011. Domains of depleted mantle: new evidence from hafnium and neodymium isotopes. Geochem. Geophys. Geosyst. 12.
    • Schoenberg, R., von Blanckenburg, F., 2006. Modes of planetary-scale Fe isotope fractionation. Earth Planet. Sci. Lett. 252, 342-359.
    • Schuessler, J.A., Schoenberg, R., Sigmarsson, O., 2009. Iron and lithium isotope systematics of the Hekla volcano, Iceland - evidence for Fe isotope fractionation during magma differentiation. Chem. Geol. 258, 78-91.
    • Sen, G., Frey, F.A., Shimizu, N., Leeman, W.P., 1993. Evolution of the lithosphere beneath Oahu, Hawaii - rare-earth element abundances in mantle xenoliths. Earth Planet. Sci. Lett. 119, 53-69.
    • Sen, G., Keshav, S., Bizimis, M., 2005. Hawaiian mantle xenoliths and magmas; composition and thermal character of the lithosphere. Am. Mineral. 90, 871-887.
    • Sen, I.S., Bizimis, M., Sen, G., 2010. Geochemistry of sulfides in Hawaiian garnet pyroxenite xenoliths: implications for highly siderophile elements in the oceanic mantle. Chem. Geol. 273, 180-192.
    • Sen, I.S., Bizimis, M., Sen, G., Huang, S., 2011. A radiogenic Os component in the oceanic lithosphere? Constraints from Hawaiian pyroxenite xenoliths. Geochim. Cosmochim. Acta 75, 4899-4916.
    • Sigmarsson, O., Carn, S., Carracedo, J.C., 1998. Systematics of U-series nuclides in primitive lavas from the 1730-36 eruption on Lanzarote, Canary Islands, and implications for the role of garnet pyroxenites during oceanic basalt formations. Earth Planet. Sci. Lett. 162, 137-151.
    • Sobolev, A.V., Hofmann, A.W., Sobolev, S.V., Nikogosian, I.K., 2005. An olivine-free mantle source of Hawaiian shield basalts. Nature 434, 590-597.
    • Sobolev, A.V., Hofmann, A.W., Kuzmin, D.V., Yaxley, G.M., Arndt, N.T., Chung, S.L., Danyushevsky, L.V., Elliott, T., Frey, F.A., Garcia, M.O., Gurenko, A.A., Kamenetsky, V.S., Kerr, A.C., Krivolutskaya, N.A., Matvienkov, V.V., Nikogosian, I.K., Rocholl, A., Sigurdsson, I.A., Sushchevskaya, N.M., Teklay, M., 2007. The amount of recycled crust in sources of mantle-derived melts. Science 316, 412-417.
    • Stracke, A., Salters, V.J.M., Sims, K.W.W., 1999. Assessing the presence of pyroxenite in the source of Hawaiian basalts: hafnium-neodymium-thorium isotope evidence. Geochem. Geophys. Geosyst. 1999GC000013.
    • Stracke, A., Hofmann, A.W., Hart, S.R., 2005. FOZO, HIMU, and the rest of the mantle zoo. Geochem. Geophys. Geosyst. 6.
    • Stracke, A., Snow, J.E., Hellebrand, E., von der Handt, A., Bourdon, B., Birbaum, K., Guenther, D., 2011. Abyssal peridotite Hf isotopes identify extreme mantle depletion. Earth Planet. Sci. Lett. 308, 359-368.
    • Teng, F.Z., Dauphas, N., Helz, R.T., 2008. Iron isotope fractionation during magmatic differentiation in Kilauea Iki Lava Lake. Science 320, 1620-1622.
    • Teng, F.Z., Dauphas, N., Huang, S., Marty, B., 2013. Iron isotopic systematics of oceanic basalts. Geochim. Cosmochim. Acta 107, 12-26.
    • Vlastelic, I., Aslanian, D., Dosso, L., Bougault, H., Olivet, J., Geli, L., 1999. Large-scale chemical and thermal division of the Pacific mantle. Nature 399, 345-350.
    • Vlastelic, I., Lewin, E., Staudacher, T., 2006. Th/U and other geochemical evidence for the Reunion plume sampling a less differentiated mantle domain. Earth Planet. Sci. Lett. 248, 379-393.
    • Weyer, S., Ionov, D.A., 2007. Partial melting and melt percolation in the mantle: the message from Fe isotopes. Earth Planet. Sci. Lett. 259, 119-133.
    • Weyer, S., Anbar, A.D., Brey, G.P., Munker, C., Mezger, K., Woodland, A.B., 2005. Iron isotope fractionation during planetary differentiation. Earth Planet. Sci. Lett. 240, 251-264.
    • White, W.M., Hofmann, A.W., 1982. Mantle heterogeneity and isotopes in oceanic basalts. Nature 295, 363-364.
    • Williams, H.M., McCammon, C.A., Peslier, A.H., Halliday, A.N., Teutsch, N., Levasseur, S., Burg, J.P., 2004. Iron isotope fractionation and the oxygen fugacity of the mantle. Science 304, 1656-1659.
    • Williams, H.M., Peslier, A.H., McCammon, C., Halliday, A.N., Levasseur, S., Teutsch, N., Burg, J.P., 2005. Systematic iron isotope variations in mantle rocks and minerals: the effects of partial melting and oxygen fugacity. Earth Planet. Sci. Lett. 235, 435-452.
    • Williams, H.M., Nielsen, S.G., Renac, C., Griffin, W.L., O'Reilly, S.Y., McCammon, C.A., Pearson, N., Viljoen, F., Alt, J.C., Halliday, A.N., 2009. Fractionation of oxygen and iron isotopes by partial melting processes: implications for the interpretation of stable isotope signatures in mafic rocks. Earth Planet. Sci. Lett. 283, 156-166.
    • Williams, H.M., Wood, B.J., Wade, J., Frost, D., Tuff, J., 2012. Isotopic evidence for internal oxidation of the Earth's mantle. Earth Planet. Sci. Lett., 321-322.
    • Wirth, R., Rocholl, A., 2003. Nanocrystalline diamond from the Earth's mantle underneath Hawaii. Earth Planet. Sci. Lett. 211, 357-369.
    • Woodland, A., Koch, M., 2003. Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa. Earth Planet. Sci. Lett. 214, 295-310.
    • Workman, R.K., Hart, S.R., Jackson, M., Regelous, M., Farley, K.A., Blusztajn, J., Kurz, M., Staudigel, H., 2004. Recycled metasomatized lithosphere as the origin of the enriched mantle II (EM2) end-member: evidence from the Samoan volcanic chain. Geochem. Geophys. Geosyst. 5.
    • Zindler, A., Hart, S., Frey, F., Jakobsson, S., 1979. Nd and Sr isotope ratios and rare earth element abundances in Reykjanes Peninsula basalts evidence for mantle heterogeneity beneath, Iceland. Earth Planet. Sci. Lett. 45, 249-262.
    • Zindler, A., Staudigel, H., Batiza, R., 1984. Isotope and trace element geochemistry of young Pacific seamounts: implications for the scale of upper mantle heterogeneity. Earth Planet. Sci. Lett. 70, 175-195.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • NSF | Collaborative research: Wat...
  • RCUK | The oxygen fugacity of cor...

Cite this article