Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Trefzer, Martin Albrecht; Walker, James Alfred; Bale, Simon Jonathan; Tyrrell, Andy (2015)
Languages: English
Types: Article

Classified by OpenAIRE into

In this study, the authors present a design optimisation case study of D-type flip-flop timing characteristics that are degraded as a result of intrinsic stochastic variability in a 25 nm technology process. What makes this work unique is that the design is mapped onto a multi-reconfigurable architecture, which is, like a field programmable gate array (FPGA), configurable at the gate level but can then be optimised using transistor level configuration options that are additionally built into the architecture. While a hardware VLSI prototype of this architecture is currently being fabricated, the results presented here are obtained from a virtual prototype implemented in SPICE using statistically enhanced 25 nm high performance metal gate MOSFET compact models from gold standard simulations for pre-fabrication verification. A D-type flip-flop is chosen as a benchmark in this study, and it is shown that timing characteristics that are degraded because of stochastic variability can be recovered and improved. This study highlights significant potential of the programmable analogue and digital array architecture to represent a next-generation FPGA architecture that can recover yield using post-fabrication transistor-level optimisation in addition to adjusting the operating point of mapped designs.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 Bernstein, K., Frank, D., Gattiker, A., et al.: 'High-performance CMOS variability in the 65-nm regime and beyond', IBM J. Res. Dev., 2010, 50, (4.5), pp. 433-449
    • 2 Asenov, A.: 'Variability in the next generation CMOS technologies and impact on design'. Proc. of the First Int. Conf. of CMOS Variability, 2007
    • 3 Borkar, S., Karnik, T., Narendra, S., Tschanz, J., Keshavarzi, A., De, V.: 'Parameter variations and impact on circuits and microarchitecture'. Proc. of the 40th Annual Design Automation Conf. (DAC), 2003, pp. 338-342
    • 4 Walker, J.A., Hilder, J.A., Reid, D., et al.: 'The evolution of standard cell libraries for future technology nodes', Genet. Program. Evol. Mach., 2011, 12, (3), pp. 235-256
    • 5 Ali, S., Ke, L., Wilcock, R., Wilson, P.: 'Improved performance and variation modelling for hierarchical-based optimisation of analogue integrated circuits'. Design Automation and Test in Europe (DATE), April 2009, pp. 712-717
    • 6 Zheng, R., Suh, J., Xu, C., Hakim, N., Bakkaloglu, B., Cao, Y.: 'Programmable analog device array (PANDA): a platform for transistor-level analog reconfigurability'. Design Automation Conf. (DAC), 2011
    • 7 Cheng, B., Wang, X., Brown, A.R., Kuang, J.B., Nassif, S., Asenov, A.: 'Transistor and SRAM co-design considerations in a 14 nm SOI FinFET technology node'. Proc. of the Int. Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2012
    • 8 Stott, E., Sedcole, P., Cheung, P.: 'Fault tolerance and reliability in field-programmable gate arrays', IET Comput. Digit. Tech., 2010, 4, (3), pp. 196-210
    • 9 Takahashi, E., Kasai, Y., Murakawa, M., Higuchi, T.: 'A post-silicon clock timing adjustment using genetic algorithms'. Symp. on VLSI Circuits, 2003, pp. 13-16 Murakawa, M., Adachi, T., Niino, Y., et al.: 'An AI-calibrated IF filter: a yield enhancement method with area and power dissipation reductions', IEEE J. Solid-State Circuits, 2003, 38, (3), pp. 495-502
    • 13 14 15 16 17 18 19 20 Takahashi, E., Murakawa, M., Kasai, Y., Higuchi, T.: 'Power dissipation reductions with genetic algortihms'. Proc. of the NASA/DOD Conf. on Evolvable Hardware, 2003, p. 111
    • Stoica, A., Zebulum, R., Keymeulen, D., Tawel, R., Daud, T., Thakoor, A.: 'Reconfigurable VLSI architectures for evolvable hardware: from experimental field programmable transistor arrays to evolution-oriented chips', IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2001, 9, (1), pp. 227-232 Langeheine, J., Trefzer, M., BrĂ¼derle, D., Meier, K., Schemmel, J.: 'On the evolution of analog electronic circuits using building blocks on a CMOS FPTA'. Proc. of the Genetic and Evolutionary Computation Conf. (GECCO), June 2004, pp. 1316-1327
    • Asenov, A.: 'Statistical nano CMOS variability and its impact on SRAM'. Extreme Statistics in Nanoscale Memory Design, 2010, pp. 17-50 Ghibaudo, G., Ioannidis, E., Dimitriadis, C., Manceau, J.-P., Haendler, S.: 'Impact of dynamic variability on the operation of CMOS inverter', Electron. Lett., 2013, 49, (19), pp. 1214-1216
    • Walker, J.A., Trefzer, M.A., Bale, S.J., Tyrrell, A.M.: 'PAnDA: a reconfigurable architecture that adapts to physical substrate variations', IEEE Trans. Comput., 2013, 62, (8), pp. 1584-1596
    • Trefzer, M.A., Walker, J.A., Tyrrell, A.M.: 'A programmable analog and digital array for bio-inspired electronic design optimization at nano-scale silicon technology nodes'. IEEE Asilomar Conf. on Signals, Systems, and Computers, Asilomar, CA, November 2011
    • Langeheine, J., Trefzer, M., Schemmel, J., Meier, K.: 'Intrinsic evolution of digital-to-analog converters using a CMOS FPTA chip'. Proc. of the NASA/ DoD Conf. on Evolvable Hardware, June 2004, pp. 18-25 Paluchowski, S., Cheng, B., Roy, S., Asenov, A., Cumming, D.: 'Investigation into effects of device variability on CMOS layout motifs', Electron. Lett., 2008, 44, (10), p. 626
    • Millar, C., Reid, D., Roy, G., Roy, S., Asenov, A.: 'Accurate statistical description of random dopant induced threshold voltage variability', IEEE Electron Device Lett., 2008, 29, (8)
    • 22 23 24 25 26 27 28 29 30 31 Asenov, A.: 'Random dopant induced threshold voltage lowering and fluctuations in sub 50 nm MOSFETs: a statistical 3D 'atomistic' simulation study', Nanotechnology, 1999, 10, pp. 153-158
    • Moroz, V.: 'Design for manufacturability: OPC and stress variations'. Proc. of the First Int. Conf. on CMOS Variability, 2007
    • Eccleston, W.: 'The effect of polysilicon grain boundaries on MOS based devices', Microelectron. Eng., 1999, 48, pp. 105-108
    • Matsunawa, T., Nosato, H., Sakanashi, H., et al.: 'Adaptive optical proximity correction using an optimization method'. Proc. of the Seventh IEEE Int. Conf. on Computer and Information Technology (CIT), 2007, pp. 853-860
    • Kheterpal, V., Rovner, V., Hersan, T.G., et al.: 'Design methodology for IC manufacturability based on regular logic-bricks'. Proc. of the 42nd Annual Design Automation Conf., 2005, pp. 353-358
    • Hilder, J.A., Walker, J.A., Tyrrell, A.M.: 'Optimising variability tolerant standard cell libraries'. 2009 IEEE Congress on Evolutionary Computation, May 2009, pp. 2273-2280
    • Langeheine, J., Trefzer, M.A., Schemmel, J., Meier, K.: 'Intrinsic evolution of analog electronic circuits using a CMOS FPTA chip'. Fifth Conf. on Evolutionary Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems (EUROGEN), 2003 Langeheine, J.: 'Intrinsic hardware evolution on the transistor level'. PhD dissertation, Rupertus Carola University of Heidelberg, Heidelberg, July 2005 Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: 'A fast elitist non-dominated sorting genetic algorithm for multi-objective optimisation: NSGA-II'. Proc. of the Conf. on Parallel Problem Solving from Nature, 2000, pp. 849-858
    • Trefzer, M.A.: 'Evolution of transistor circuits'. PhD dissertation, Rupertus Carola University of Heidelberg, Heidelberg, December 2006 Weste, N., Harris, D.: 'CMOS VLSI design: a circuits and systems perspective' (Addison-Wesley, 2011, 4th edn.)
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article