LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Martinez, G. J.; Morita, K.; Adamatzky, A.; Margenstern, M. (2010)
Publisher: Springer-Verlag
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Computer Science::Hardware Architecture, Computer Science::Emerging Technologies
ACM Ref: Hardware_LOGICDESIGN
In this paper we present a two-dimensional chaotic cellular automaton, the Life rule B2/S2345, able to simulate the action of an adder with majority gates, stimulated by gliders collisions transformed as competing patterns. Values of Boolean variables are encoded into two types of patterns --- symmetric (FALSE) and asymmetric (TRUE) patterns -- which compete for the `empty' space when propagate in the channels. We construct basic logical gates and elementary arithmetical circuits by simulating logical signals with gliders reaction propagating geometrically restricted by stationary non-destructible still life. Therefore an implementation of universal logical gates and a majority binary adder is constructed
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. A. Adamatzky (Ed.): Collision-Based Computing, Springer (2002).
    • 2. A. Adamatzky: Hot ice computer, Physics Letters A 374(2), 264{271 (2009).
    • 3. A. Adamatzky (Ed.): Game of Life Cellular Automata, Springer (2010).
    • 4. A. Adamatzky, B. L. Costello, T. Asai: Reaction-Di usion Computers, Elsevier (2005).
    • 5. A. Adamatzky, G. J. Mart nez, J. C. Seck-Tuoh-Mora: Phenomenology of reactiondi usion binary-state cellular automata, Int. J. Bifurcation and Chaos 16(10), 1{21 (2006).
    • 6. S. Adachi, F. Peper, J. Lee, H. Umeo: Occurrence of gliders in an in nite class of Life-like cellular automata, Lecture Notes in Computer Science 5191, 32{41 (2008).
    • 7. E. R. Banks: Information Processing and Transmission in Cellular Automata, Ph.D. thesis Department of Mechanical Engineering, MIT (1971).
    • 8. E. R. Berlekamp, J. H. Conway, R. K. Guy: Winning Ways for your Mathematical Plays, Academic Press, (vol. 2, chapter 25) (1982).
    • 9. P. Chapman: Life Universal Computer, http://www.igblan.free-online.co.uk/ igblan/ca/ (2002).
    • 10. E. F. Codd: Cellular Automata, Academic Press (1968).
    • 11. M. Cook: Still Life Theory, In [15], 93{118 (2003).
    • 12. D. Eppstein: Growth and decay in Life-like cellular automata, arXiv:0911.2890v1 [nlin.CG], (2009).
    • 13. M. Gardner: Mathematical Games | The fantastic combinations of John H. Conway's new solitaire game Life, Scienti c American 223, 120{123 (1970).
    • 14. D. Gri eath, C. Moore: Life Without Death is P-complete, Complex Systems 10, 437{447 (1996).
    • 15. D. Gri eath, C. Moore (Eds.): New constructions in cellular automata, Oxford University Press (2003).
    • 16. A. Goucher: Completed Universal Computer/Constructor (2009). In: http:// pentadecathlon.com/lifeNews/2009/08/post.html.
    • 17. J. Gravner: Growth Phenomena in Cellular Automata, In [15], 161{181 (2003).
    • 18. S. R. Hamero : Ultimate Computing: Biomolecular Consciousness and Nanotechnology, Elsevier Science Publishers BV (1987).
    • 19. K. Imai, K. Morita: A computation-universal two-dimensional 8-state triangular reversible cellular automaton, Theoret. Comput. Sci. 231, 181{191 (2000).
    • 20. G. J. Mart nez, A. Adamatzky, B. L. Costello: On logical gates in precipitating medium: cellular automaton model, Physics Letters A 1(48), 1{5 (2008).
    • 21. G. J. Mart nez, A. Adamatzky, H. V. McIntosh: Localization dynamic in a binary two-dimensional cellular automaton: the Di usion Rule, arXiv:0908.0828v1 [cs.FL], 2009.
    • 22. G. J. Mart nez, A. Adamatzky, H. V. McIntosh, B. L. Costello: Computation by competing patterns: Life rule B2=S2345678, In Automata 2008: Theory and Applications of Cellular Automata, Adamatzky, A. et. al (Eds.), Luniver Press (2008).
    • 23. H. V. McIntosh: Life's Still Lifes, http://delta.cs.cinvestav.mx/~mcintosh (1988).
    • 24. M. Minsky: Computation: Finite and In nite Machines, Prentice Hall (1967).
    • 25. M. Mitchell: Life and evolution in computers, History and Philosophy of the Life Sciences 23, 361{383 (2001).
    • 26. M. Magnier, C. Lattaud, J.-K. Heudin: Complexity Classes in the Two-dimensional Life Cellular Automata Subspace, Complex Systems 11(6), 419{436 (1997).
    • 27. K. Morita, M. Margenstern, K. Imai: Universality of reversible hexagonal cellular automata, Theoret. Informatics Appl. 33, 535{550 (1999).
    • 28. G. J. Mart nez, A. M. Mendez, M. M. Zambrano: Un subconjunto de automata celular con comportamiento complejo en dos dimensiones, http://uncomp.uwe. ac.uk/genaro/Papers/Papers_on_CA.html (2005).
    • 29. W. Porod, C. S. Lent, G. H. Bernstein, A. O. Orlov, I. Amlani, G. L. Snider, J. L. Merz: Quantum-dot cellular automata: computing with coupled quantum dots, Int. J. Electronics 86(5), 549{590 (1999).
    • 30. N. Packard, S. Wolfram: Two-dimensional cellular automata, J. Statistical Physics 38, 901{946 (1985).
    • 31. P. Rendell: Turing universality of the game of life, In [1], 513{540 (2002).
    • 32. J. P. Rennard: Implementation of Logical Functions in the Game of Life, In [1], 491{512 (2002).
    • 33. T. To oli: Non-Conventional Computers, Encyclopedia of Electrical and Electronics Engineering (John Webster Ed.) 14, 455{471, Wiley & Sons, (1998).
    • 34. J. von Neumann: Theory of Self-reproducing Automata (edited and completed by A. W. Burks), University of Illinois Press, Urbana and London (1966).
    • 35. R. Wainwright (Ed.): Lifeline - A Quaterly Newsletter for Enthusiasts of John Conway's Game of Life, Issues 1 to 11, March 1971 to September 1973.
    • 36. K. Walus, G. Schulhof, R. Zhang, W. Wang, G. A. Jullien: Circuit design based on majority gates for applications with quantum-dot cellular automata. In Proceedings of IEEE Asilomar Conference on Signals, Systems, and Computers (2004).
  • No related research data.
  • No similar publications.
  • BioEntity Site Name
    2c22Protein Data Bank

Share - Bookmark

Download from

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok