Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Richens, Joanna L.; Spencer, Hannah L.; Butler, Molly; Cantlay, Fiona; Vere, Kelly-Ann; Bajaj, Nin; Morgan, Kevin; O'Shea, Paul (2016)
Publisher: Nature Publishing Group
Journal: Scientific Reports
Languages: English
Types: Article
Subjects: Article
Keratin 9 was recently identified as an important component of a biomarker panel which demonstrated a high diagnostic accuracy (87%) for Alzheimer’s disease (AD). Understanding how a protein which is predominantly expressed in palmoplantar epidermis is implicated in AD may shed new light on the mechanisms underlying the disease. Here we use immunoassays to examine blood plasma expression patterns of Keratin 9 and its relationship to other AD-associated proteins. We correlate this with the use of an in silico analysis tool VisANT to elucidate possible pathways through which the involvement of Keratin 9 may take place. We identify possible links with Dickkopf-1, a negative regulator of the wnt pathway, and propose that the abnormal expression of Keratin 9 in AD blood and cerebrospinal fluid may be a result of blood brain barrier dysregulation and disruption of the ubiquitin proteasome system. Our findings suggest that dysregulated Keratin 9 expression is a consequence of AD pathology but, as it interacts with a broad range of proteins, it may have other, as yet uncharacterized, downstream effects which could contribute to AD onset and progression.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Langbein, L., Heid, H. W., Moll, I. & Franke, W. W. Molecular characterization of the body site-specicfi human epidermal cytokeratin 9: cDNA cloning, amino acid sequence, and tissue specificity of gene expression. Diefrentiation 55, 57-71 (1993).
    • 2. Du, Z. F. et al. A novel mutation within the 2B rod domain of keratin 9 in a Chinese pedigree with epidermolytic palmoplantar keratoderma combined with knuckle pads and camptodactyly. Eur J Dermatol 21, 675-679 (2011).
    • 3. Reis, A. et al. Keratin 9 gene mutations in epidermolytic palmoplantar keratoderma (EPPK). Nat Genet 6, 174-179 (1994).
    • 4. Shimomura, Y., Wajid, M., Weiser, J., Kraemer, L. & Christiano, A. M. Mutations in the keratin 9 gene in Pakistani families with epidermolytic palmoplantar keratoderma. Clin Exp Dermatol 35, 759-764 (2010).
    • 5. Ghosh, D., Lippert, D., Krokhin, O., Cortens, J. P. & Wilkins, J. A. Denfiing the membrane proteome of NK cells. J Mass Spectrom 45, 1-25 (2010).
    • 6. van Niel, G. et al. Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology 121, 337-349 (2001).
    • 7. de Mateo, S., Castillo, J., Estanyol, J. M., Ballesca, J. L. & Oliva, R. Proteomic characterization of the human sperm nucleus. Proteomics 11, 2714-2726 (2011).
    • 8. Bohm, D. et al. Comparison of tear protein levels in breast cancer patients and healthy controls using a de novo proteomic approach. Oncol Rep 28, 429-438 (2012).
    • 9. Kim, Y. S. et al. Apolipoprotein A-IV as a novel gene associated with polycystic ovary syndrome. Int J Mol Med 31, 707-716 (2013).
    • 10. Fu, B. S. et al. [Serum proteomic analysis on metastasis-associated proteins of hepatocellular carcinoma]. Nan Fang Yi Ke Da Xue 11. Veening, J. G. & Barendregt, H. P. eTh regulation of brain states by neuroactive substances distributed via the fcerebrospinal uflid; a Xue Bao 29, 1775-1778 (2009).
    • review. Cerebrospinal Fluid Res 7, 1 (2010).
    • tandem mass spectrometry. Proteomics 7, 469-473 (2007). o
    • 12. Pan, S. et al. A combined dataset of human cerebrospinal fluid proteins identified by multi-dimensional chromatography and 13. Jiang, S. et al. Proteomic analysis of the cerebrospinal uflid in multiple sclerosis and neuromyelitis optica patients. Mol Med Rep 6, 14. Ballard, C. et al. Alzheimer's disease. Lancet 377, 1019-1031 (2011). o 1081-1086 (2012).
    • ulfid. J Alzheimers Dis 28, 625-636 (2012). r
    • 15. Vafadar-Isfahani, B. et al. Identicfiation of SPARC-like 1 protein as part of a biomarker panel for Alzheimer's disease in cerebrospinal 16. Richens, J. L. et al. Practical detection of a denfiitive biomarker panel for Alzheimer's disease; comparisons between matched plasma 17. Alafuzo,f I., Adolfsson, R., Bucht, G. & Winblad, B. Albumin and immunpoglobulin in plasma and cerebrospinal uflid, and bloodand cerebrospinal uflid. Int J Mol Epidemiol Genet 5, 53-70 (2014).
    • cerebrospinal fluid barrier function in patients with dementia of Alzheimer type and multi-infarct dementia. J Neurol Sci 60, 465-472 (1983).
    • 19. Cortes-Canteli, M. et al. Fibrinogen and beta-amyloid assocdiationalters thrombosis and bfirinolysis: a possible contributing factor 18. Buchhave, P. et al. Cerebrospinal uflid levels of beta-amyloid 1-42, but not of tau, are fully changed already 5 to 10 years before the onset of Alzheimer dementia. Arch Gen Psychiatry 69, 98-106 (2012).
    • e to Alzheimer's disease. Neuron 66, 695-709 (2010).
    • 20. Soares, H. D. et al. Plasma Biomarkers Associated With the Apolipoprotein E Genotype and Alzheimer Disease. Arch Neurol, 1-8 21. Yin, G. N., Lee, H. W., Cho, J. Y. & Suk, K. Nteuronal pentraxin receptor in cerebrospinal fluid as a potential biomarker for (2012).
    • neurodegenerative diseases. Brain Res 1265, 158-170 (2009).
    • disease. J Alzheimers Dis 19, 1081-1091 c(2010).
    • 22. Mueller, C. et al. The heme degradation pathway is a promising serum biomarker source for the early detection of Alzheimer's 24. Hu, Z. et al. VisANT 4.0: Integerative network platform to connect genes, drugs, diseases and therapies. Nucleic Acids Res 41, 23. Li, X., Long, J., He, T., Belshaw, R. & Scott, J. Integrated genomic approaches identify major pathways and upstream regulators in late onset Alzheimer's disease. Sci Rep 5, 12393 (2015).
    • 25. Richens, J. L., Morgan, K. & rO'Shea, P. Reverse engineering of Alzheimer's disease based on biomarker pathways analysis. Neurobiol W225-231 (2013).
    • 26. Johnson, C. et al. Vrisualization and biochemical analyses of the emerging mammalian 14-3-3-phosphoproteome. Mol Cell Aging 35, 2029-2038 (2014).
    • Inform 24, 1o39-153 (2010).
    • Proteomics 10, M110 005751 (2011).
    • 27. Reddy, A. et al. Robust gene network analysis reveals alteration of the STAT5a network as a hallmark of prostate cancer. Genome c
    • 28. Araujo, D. J. et al. FoxP1 orchestration of ASD-relevant signaling pathways in the striatum. Genes Dev 29, 2081-2096 (2015).
    • 29. Mellor, J. C., Yanai, I., Clodfelter, K. H., Mintseris, J. & DeLisi, C. Predictome: a database of putative functional links between proteins. Nucleic Acids Res 30, 306-309 (2002).
    • 30. Bohm, C. et al. Current and future implications of basic and translational research on amyloid-beta peptide production and removal pathways. Mol Cell Neurosci 66, 3-11 (2015).
    • 31. Kim, J., Yoon, H., Basak, J. & Kim, J. Apolipoprotein E in synaptic plasticity and Alzheimer's disease: potential cellular and molecular mechanisms. Mol Cells 37, 767-776 (2014).
    • U pathogenesis of Alzheimer disease. Front Aging Neurosci 7, 199 (2015).
    • 32. Sato, N. & Morishita, R. eTh roles of lipid and glucose metabolism in modulation of beta-amyloid, tau, and neurodegeneration in the 33. Croft, D. et al. eTh Reactome pathway knowledgebase. Nucleic Acids Res 42, D472-477 (2014).
    • 34. Denery, J. R., Nunes, A. A. & Dickerson, T. J. Characterization of differences between blood sample matrices in untargeted metabolomics. Anal Chem 83, 1040-1047 (2011).
    • 35. aThmbisetty, M. et al. Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease. Arch Gen Psychiatry 67, 739-748 (2010).
    • 36. Noguchi, M. et al. Roles of serum fibrinogen alpha chain-derived peptides in Alzheimer's disease. Int J Geriatr Psychiatry 29, 808-818 (2014).
    • 37. Moll, R., Divo, M. & Langbein, L. eTh human keratins: biology and pathology. Histochem Cell Biol 129, 705-733 (2008).
    • 38. Fu, D. J. et al. Keratin 9 is required for the structural integrity and terminal diefrentiation of the palmoplantar epidermis. J Invest Dermatol 134, 754-763 (2014).
    • 39. Sang, L. et al. Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell 145, 513-528 (2011).
    • 40. Otto, E. A. et al. Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin. Nat Genet 37, 282-288 (2005).
    • 41. Zhou, M. et al. An investigation into the human serum “interactome”. Electrophoresis 25, 1289-1298 (2004).
    • 42. Croft, D. et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 39, D691-697 (2011).
    • 43. De Ferrari, G. V. et al. Wnt/beta-catenin signaling in Alzheimer's disease. CNS Neurol Disord Drug Targets 13, 745-754 (2014).
    • 44. De Ferrari, G. V. & Inestrosa, N. C. Wnt signaling function in Alzheimer's disease. Brain Res Brain Res Rev 33, 1-12 (2000).
    • 45. Riederer, B. M., Leuba, G., Vernay, A. & Riederer, I. M. eTh role of the ubiquitin proteasome system in Alzheimer's disease. Exp Biol Med (Maywood) 236, 268-276 (2011).
    • 46. Parr, C., Mirzaei, N., Christian, M. & Sastre, M. Activation of the Wnt/beta-catenin pathway represses the transcription of the betaamyloid precursor protein cleaving enzyme (BACE1) via binding of T-cell factor-4 to BACE1 promoter. FASEB J 29, 623-635 (2015).
    • 47. Yamaguchi, Y. et al. Dickkopf 1 (DKK1) regulates skin pigmentation and thickness by afecting Wnt/beta-catenin signaling in keratinocytes. FASEB J 22, 1009-1020 (2008).
    • 48. Caraci, F. et al. The Wnt antagonist, Dickkopf-1, as a target for the treatment of neurodegenerative disorders. Neurochem Res 33, 2401-2406 (2008).
    • 49. Killick, R. et al. Clusterin regulates beta-amyloid toxicity via Dickkopf-1-driven induction of the wnt-PCP-JNK pathway. Mol Psychiatry 19, 88-98 (2014).
    • 50. Fatima, S., Luk, J. M., Poon, R. T. & Lee, N. P. Dysregulated expression of dickkopfs for potential detection of hepatocellular carcinoma. Expert Rev Mol Diagn 14, 535-548 (2014).
    • 51. Bassani-Sternberg, M. et al. Soluble plasma HLA peptidome as a potential source for cancer biomarkers. Proc Natl Acad Sci USA 107, 18769-18776 (2010).
    • 52. Farrah, T. et al. A high-confidence human plasma proteome reference set with estimated concentrations in PeptideAtlas. Mol Cell Proteomics 10, M110 006353 (2011).
    • 53. Jeong, S. K. et al. Data management and functional annotation of the Korean reference plasma proteome. Proteomics 10, 1250-1255 (2010).
    • 54. Liu, X. et al. Mapping the human plasma proteome by SCX-LC-IMS-MS. J Am Soc Mass Spectrom 18, 1249-1264 (2007). 56. Manabe, T., Jin, Y. & Tani, O. Assignment of human plasma polypeptides on a nondenaturing 2-D gel usifngMALDI-MS and PMF 55. Madian, A. G. & Regnier, F. E. Profiling carbonylated proteins in human plasma. J Proteome Res 9, 1330-1343 (2010). and comparisons with the results of intact protein mapping. Electrophoresis 28, 843-863 (2007). 6481-6488 (2009). o
    • 57. Panchaud, A. et al. Precursor acquisition independent from ion count: how to dive deeper into the proteomics ocean. Anal Chem 81, 58. Prentice, R. L. et al. Novel proteins associated with risk for coronary heart disease or stroke among postmenopausal women o identified by in-depth plasma proteome profiling. Genome Med 2, 48 (2010).
    • 59. Qian, W. J. et al. Quantitative proteome analysis of human plasma following in vivo lipopolysaccharide administration using 60. Qian, W. J. et al. Plasma proteome response to severe burn injury revealed by 18Or-labeled “universal” reference-based quantitative 16O/18O labeling and the accurate mass and time tag approach. Mol Cell Proteomics 4, 700-709 (2005). proteomics. J Proteome Res 9, 4779-4789 (2010).
    • 61. Sennels, L. et al. Proteomic analysis of human blood serum using peptide library beads. J Proteome Res 6, 4055-4062 (2007).
    • 62. Tu, C. J. et al. High-sensitivity analysis of human plasma proteome by immobilized isoelectric focusing fractionation coupled to mass spectrometry identification. J Proteome Res 4, 1265-1273 (2005).
    • 63. Liebner, S. et al. Wnt/beta-catenin signaling controls development of the blood-brain barrier. J Cell Biol 183, 409-417 (2008).
    • 64. Deo, A. K. et al. Activity of P-Glycoprotein, a beta-Amyloid Transporter at the Blood-Brain Barrier, Is Compromised in Patients with 65. Liu, L., Wan, W., Xia, S., Kalionis, B. & Li, Y. Dysfunctional dWnt/beta-catenin signaling contributes to blood-brain barrier Mild Alzheimer Disease. J Nucl Med 55, 1106-1111 (2014).
    • quantitative proteomics. Cell 143, 951-965 (2010). e breakdown in Alzheimer's disease. Neurochem Int 75, 19-25 (2014).
    • 66. Bennett, E. J., Rush, J., Gygi, S. P. & Harper, J. W. Dynamics of cullin-RING ubiquitin ligase network revealed by systematic 67. Brehme, M. et al. Charting the molecular netwotrkof the drug target Bcr-Abl. Proc Natl Acad Sci USA 106, 7414-7419 (2009).
    • 68. Lopitz-Otsoa, F. et al. Integrative analysis of the ubiquitin proteome isolated using Tandem Ubiquitin Binding Entities (TUBEs).
    • 69. Nicholson, J. et al. A systems wide mass cspectrometric based linear motif screen to identify dominant in-vivo interacting proteins J Proteomics 75, 2998-3014 (2012).
    • for the ubiquitin ligase MDM2. Cell Signal 26, 1243-1257 (2014).
    • Biol 311, 265-306 (2014). e
    • 70. Homberg, M. & Magin, T. M. Beyond expectations: novel insights into epidermal keratin function and regulation. Int Rev Cell Mol 72. Stelzl, U. et al. A human prrotein-protein interaction network: a resource for annotating the proteome. Cell 122, 957-968 (2005). 71. Jones, J. C., Hopkinson, S. B. & Goldfinger, L. E. Structure and assembly of hemidesmosomes. BioEssays 20, 488-494 (1998). 1245-1266 (2013). r 73. Roy, S. J. et al. Novel, gel-free proteomics approach identifies RNF5 and JAMP as modulators of GPCR stability. Mol Endocrinol 27, 75. Colas, J. et al. oDisruption of cytokeratin-8 interaction with F508del-CFTR corrects its functional defect. Hum Mol Genet 21, 623-634 74. Catimel, B. et al. Biosensor-based micro-afinity purification for the proteomic analysis of protein complexes. J Proteome Res 4, 1646-1656 (2005).
    • 972c-985(2012).
    • 76. von Eyss, B. et al. eTh SNF2-like helicase HELLS mediates E2F3-dependent transcription and cellular transformation. EMBO J 31, n78.Humphries, J. D. et al. Proteomic analysis of integrin-associated complexes identiefis RCC2 as a dual regulator of Rac1 and Arf6. Sci 77. Singh, G. et al. eTh cellular EJC interactome reveals higher-order mRNP structure and an EJC-SR protein nexus. Cell 151, 750-764 (2012).
    • Signal 2, ra51 (2009).
    • U (2010).
    • 79. Behrends, C., Sowa, M. E., Gygi, S. P. & Harper, J. W. Network organization of the human autophagy system. Nature 466, 68-76 80. Byron, A., Humphries, J. D., Craig, S. E., Knight, D. & Humphries, M. J. Proteomic analysis of alpha4beta1 integrin adhesion complexes reveals alpha-subunit-dependent protein recruitment. Proteomics 12, 2107-2114 (2012).
    • 81. Havugimana, P. C. et al. A census of human soluble protein complexes. Cell 150, 1068-1081 (2012).
    • 82. Carmon, K. S., Gong, X., Yi, J., oThmas, A. & Liu, Q. RSPO-LGR4 functions via IQGAP1 to potentiate Wnt signaling. Proc Natl Acad Sci USA 111, E1221-1229 (2014).
    • 83. Hawkins, P. G. & Morris, K. V. Transcriptional regulation of Oct4 by a long non-coding RNA antisense to Oct4-pseudogene 5. Transcription 1, 165-175 (2010).
    • 84. Glatter, T., Wepf, A., Aebersold, R. & Gstaiger, M. An integrated workflow for charting the human interaction proteome: insights into the PP2A system. Mol Syst Biol 5, 237 (2009).
    • 85. Bouwmeester, T. et al. A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 6, 97-105 (2004).
    • 86. Guo, C. W. et al. Proteomic analysis reveals novel binding partners of MIP-T3 in human cells. Proteomics 10, 2337-2347 (2010).
    • 87. Fang, Y. et al. The interaction between ubiquitin C-terminal hydrolase 37 and glucose-regulated protein 78 in hepatocellular carcinoma. Mol Cell Biochem 359, 59-66 (2012).
    • 88. Bett, J. S. et al. eTh P-body component USP52/PAN2 is a novel regulator of HIF1A mRNA stability. Biochem J 451, 185-194 (2013).
    • 89. Jin, J. et al. Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization. Curr Biol 14, 1436-1450 (2004).
    • [Art. Id: srep22962]
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Cite this article