LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Billington, Jac; Field, David T.; Wilkie, Richard M.; Wann, John P. (2010)
Publisher: American Psychological Association
Languages: English
Types: Article
Subjects:
Identifiers:doi:10.1037/a0018728
Locomoting through the environment typically involves anticipating impending changes in heading trajectory in addition to maintaining the current direction of travel. We explored the neural systems involved in the “far road” and “near road” mechanisms proposed by Land and Horwood (1995) using simulated forward or backward travel where participants were required to gauge their current direction of travel (rather than directly control it). During forward egomotion, the distant road edges provided future path information, which participants used to improve their heading judgments. During backward egomotion, the road edges did not enhance performance because they no longer provided prospective information. This behavioral dissociation was reflected at the neural level, where only simulated forward travel increased activation in a region of the superior parietal lobe and the medial intraparietal sulcus. Providing only near road information during a forward heading judgment task resulted in activation in the motion complex. We propose a complementary role for the posterior parietal cortex and motion complex in detecting future path information and maintaining current lane positioning, respectively. (PsycINFO Database Record (c) 2010 APA, all rights reserved)
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Andersen, R. A., Asanuma, C., Essick, G., & Siegel, R. M. (1990). Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. Journal of Comparative Neurology, 296, 65-113.
    • Brett, M., Anton, J., Valabregue, R., & Poline, J. (2002, June 2nd-6th). Region of interest analysis using an SPM toolbox. Paper presented at the The 8th International Conference on Functional Mapping of the Human Brain, Sendai, Japan.
    • Cohen, Y. E., & Andersen, R. A. (2002). A common reference frame for movement plans in the posterior parietal cortex. Nature Reviews Neuroscience, 3, 553-562.
    • Corbetta, M., Akbudak, E., Conturo, T. E., Snyder, A. Z., Ollinger, J. M., Drury, H. A., et al. (1998). A common network of functional areas for attention and eye movements. Neuron, 21, 761-773.
    • Desmurget, M., Epstein, C. M., Turner, R. S., Prablanc, C., Alexander, G. E., & Grafton, S. T. (1999). Role of the posterior parietal cortex in updating reaching movements to a visual target. Nature Neuroscience, 2, 563-567.
    • Duffy, C. J., & Wurtz, R. H. (1995). Response of monkey MST neurons to optic flow stimuli with shifted centers of motion. Journal of Neuroscience, 15(7), 5192-5208.
    • Dukelow, S. P., DeSouza, J. F. X., Culham, J. C., van den Berg, A. V., Menon, R. S., & Vilis, T. (2001). Distinguishing subregions of the human MT plus complex using visual fields and pursuit eye movements. Journal of Neurophysiology, 86, 1991-2000.
    • Erickson, R. G., & Thier, P. (1991). A neuronal correlate of spatial stability during periods of self-induced visual-motion. Experimental Brain Research, 86, 608-616.
    • Eskandar, E. N., & Assad, J. A. (1999). Dissociation of visual, motor and predictive signals in parietal cortex during visual guidance. Nature Neuroscience, 2, 88-93.
    • Fajen, B. R., & Warren, W. H. (2003). Behavioral dynamics of steering, obstacle avoidance, and route selection. Journal of Experimental Psychology-Human Perception and Performance, 29, 343-362.
    • Fernandez-Ruiz, J., Goltz, H. C., DeSouza, J. F. X., Vilis, T., & Crawford, J. D. (2007). Human parietal "reach region" primarily encodes intrinsic visual direction, not extrinsic movement direction, in a visualmotor dissociation task. Cerebral Cortex, 17, 2283-2292.
    • Field, D. T., Wilkie, R. M., & Wann, J. P. (2007). Neural systems in the visual control of steering. Journal of Neuroscience, 27, 8002-8010.
    • Friston, K. J., Holmes, A., Poline, J. B., Price, C. J., & Frith, C. D. (1996). Detecting activations in PET and fMRI: Levels of inference and power. Neuroimage, 4, 223-235.
    • Grefkes, C., & Fink, G. R. (2005). The functional organization of the intraparietal sulcus in humans and monkeys. Journal of Anatomy, 207, 3-17.
    • Grefkes, C., Ritzl, A., Zilles, K., & Fink, G. R. (2004). Human medial intraparietal cortex subserves visuomotor coordinate transformation. Neuroimage, 23, 1494-1506.
    • Hopfinger, J. B., Buonocore, M. H., & Mangun, G. R. (2000). The neural mechanisms of top-down attentional control. Nature Neuroscience, 3, 284-291.
    • Huk, A. C., Dougherty, R. F., & Heeger, D. J. (2002). Retinotopy and functional subdivision of human areas MT and MST. Journal of Neuroscience, 22, 7195-7205.
    • Hutton, C., Bork, A., Josephs, O., Deichmann, R., Ashburner, J., & Turner, R. (2002). Image distortion correction in fMRI: A quantitative evaluation. Neuroimage, 16, 217-240.
    • Jezzard, P., & Balaban, R. S. (1995). Correction for geometric distortion in echo-planar images from B-0 field variations. Magnetic Resonance in Medicine, 34, 65-73.
    • Kan, S., Misaki, M., Iwata, K., Koike, T., & Miyauchi, S. (2007). An active role of MST in maintaining visual stability during saccades in the natural environment. Neuroscience Research, 58, S94-S94.
    • Kan, S., Misaki, M., Koike, T., & Miyauchi, S. (2008). Different modulation of medial superior temporal activity across saccades: a functional magnetic resonance imaging study. Neuroreport, 19, 133-137.
    • Lagae, L., Maes, H., Raiguel, S., Xiao, D. K., & Orban, G. A. (1994). Responses of macaque STS neurons to optic flow components - A comparison of areas MT and MST. Journal of Neurophysiology, 71, 1597- 1626.
    • Land, M., & Horwood, J. (1995). Which parts of the road guide steering? Nature, 377, 339-340.
    • Lappe, M., Bremmer, F., & van den Berg, A. V. (1999). Perception of self-motion from visual flow. Trends in Cognitive Sciences, 3, 329-336.
    • Lee, C. C., Jack, C. R., Grimm, R. C., Rossman, P. J., Felmlee, J. P., Ehman, R. L., et al. (1996). Real-time adaptive motion correction in functional MRI. Magnetic Resonance in Medicine, 36, 436-444.
    • Li, L., & Warren, W. H. (2000). Perception of heading during rotation: sufficiency of dense motion parallax and reference objects. Vision Research, 40, 3873-3894.
    • Maguire, E. A., Burgess, N., Donnett, J. G., Frackowiak, R. S. J., Frith, C. D., & O'Keefe, J. (1998). Knowing where and getting there: A human navigation network. Science, 280, 921-924.
    • Morrone, M. C., Tosetti, M., Montanaro, D., Fiorentini, A., Cioni, G., & Burr, D. C. (2000). A cortical area that responds specifically to optic flow, revealed by fMRI. Nature Neuroscience, 3, 1322-1328.
    • Page, W. K., & Duffy, C. J. (2008). Cortical neuronal responses to optic flow are shaped by visual strategies for steering. Cerebral Cortex, 18, 727-739.
    • Perry, R. J., & Zeki, S. (2000). The neurology of saccades and covert shifts in spatial attention - An eventrelated fMRI study. Brain, 123, 2273-2288.
    • Peuskens, H., Sunaert, S., Dupont, P., Van Hecke, P., & Orban, G. A. (2001). Human brain regions involved in heading estimation. Journal of Neuroscience, 21, 2451-2461.
    • Pollmann, S., Weidner, R., Humphreys, G. W., Olivers, C. N. L., Muller, K., Lohmann, G., et al. (2003). Separating distractor rejection and target detection in posterior parietal cortex - An event-related fMRI study of visual marking. Neuroimage, 18, 310-323.
    • Read, H. L., & Siegel, R. M. (1997). Modulation of responses to optic flow in area 7a by retinotopic and oculomotor cues in monkey. Cerebral Cortex, 7, 647-661.
    • Schaafsma, S. J., & Duysens, J. (1996). Neurons in the ventral intraparietal area of awake macaque monkey closely resemble neurons in the dorsal part of the medial superior temporal area in their responses to optic flow patterns. Journal of Neurophysiology, 76, 4056-4068.
    • Schraa-Tam, C. K. L., van der Lugt, A., Frens, M. A., Smits, M., van Broekhoven, P. C. A., & van der Geest, J. N. (2008). An fMRI study on smooth pursuit and fixation suppression of the optokinetic reflex using similar visual stimulation. Experimental Brain Research, 185, 535-544.
    • Seubert, J., Humphreys, G. W., Muller, H. J., & Gramann, K. (2008). Straight after the turn: The role of the parietal lobes in egocentric space processing. Neurocase, 14, 204-219.
    • Smith, A., & Wall, M. B. (2007). Sensitivity to the stereoscopic depth of a moving surface in the human MT complex measured with fMRI adaptation. Perception, 36, 179-180.
    • Snyder, L. H., Batista, A. P., & Andersen, R. A. (2000). Intention-related activity in the posterior parietal cortex: a review. Vision Research, 40, 1433-1441.
    • Talairach, J., & Tournoux, P. (1988). Coplanar stereotaxic atlas of the human brain. New York: Thieme Medical Publishers.
    • Wall, M. B., & Smith, A. T. (2008). The representation of egomotion in the human brain. Current Biology, 18, 191-194.
    • Warren, W. H., & Hannon, D. J. (1988). Direction of self-motion is perceived from optical flow. Nature, 336, 162-163.
    • Wilkie, R., & Wann, J. (2003). Controlling steering and judging heading: Retinal flow, visual direction, and extraretinal information. Journal of Experimental Psychology-Human Perception and Performance, 29, 363-378.
    • Wilkie, R. M., & Wann, J. P. (2002). Driving as night falls: The contribution of retinal flow and visual direction to the control of steering. Current Biology, 12, 2014-2017.
    • Wilkie, R. M., & Wann, J. P. (2003). Eye-movements aid the control of locomotion. Journal of Vision, 3, 677- 684.
    • Wilkie, R. M., & Wann, J. P. (2006). Judgments of path, not heading, guide locomotion. Journal of Experimental Psychology-Human Perception and Performance, 32, 88-96.
    • Wilkie, R. M., Wann, J. P., & Allison, R. S. (2008). Active gaze, visual look-ahead, and locomotor control. Journal of Experimental Psychology-Human Perception and Performance, 34, 1150-1164.
    • Wolbers T, Hegarty M, Buchel C, Loomis JM (2008) Spatial updating: how the brain keeps track of changing object locations during observer motion. Nature Neuroscience, 11, 1223-1230.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

  • WT

Cite this article