LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Harris, Bethan Mary; Highwood, Ellie (2011)
Publisher: American Geophysical Union
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Atmospheric and Oceanic Physics
In this study we quantify the relationship between the aerosol optical depth increase from a volcanic eruption and the severity of the subsequent surface temperature decrease. This investigation is made by simulating 10 different sizes of eruption in a global circulation model (GCM) by changing stratospheric sulfate aerosol optical depth at each time step. The sizes of the simulated eruptions range from Pinatubo‐sized up to the magnitude of supervolcanic eruptions around 100 times the size of Pinatubo. From these simulations we find that there is a smooth monotonic relationship between the global mean maximum aerosol optical depth anomaly and the global mean temperature anomaly and we derive a simple mathematical expression which fits this relationship well. We also construct similar relationships between global mean aerosol optical depth and the temperature anomaly at every individual model grid box to produce global maps of best‐fit coefficients and fit residuals. These maps are used with caution to find the eruption size at which a local temperature anomaly is clearly distinct from the local natural variability and to approximate the temperature anomalies which the model may simulate following a Tambora‐sized eruption. To our knowledge, this is the first study which quantifies the relationship between aerosol optical depth and resulting temperature anomalies in a simple way, using the wealth of data that is available from GCM simulations.\ud \ud
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Ambrose, S. H. (1998), Late Pleistocene human bottlenecks, volcanic winter, and differentiation of modern humans, J. Human Evol., 34, 623-651.
    • Bekki, S. (1995), Oxidation of volcanic SO2: A sink for stratospheric OH and H2O, Geophys. Res. Lett., 22(8), 913-916.
    • Bluth, G., S. Doiron, C. Schnetzler, A. Krueger, and L. Walter (1992), Global tracking of the SO2 clouds from the June 1991 Mount Pinatubo eruptions, Geophys. Res. Lett., 19(2), 151-154.
    • Christiansen, B. (2007), Volcanic eruptions, large‐scale modes in the northern hemisphere, and the El Nino southern oscillation, J. Clim., 21, 910-922.
    • Chuine, I., P. Yiou, B. Seguin, V. Daux, and E. Le Roy Ladurie (2004), Grape ripening as a past climate indicator, Nature, 432, 289-290.
    • Collins, M., S. F. B. Tett, and C. Cooper (2001), The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments, Clim. Dyn., 17(1), 61-81.
    • Cusack, S., A. Slingo, J. M. Edwards, and M. Wild (1998), The radiative impact of a simple aerosol climatology on the Hadley Centre atmospheric GCM, Q. J. R. Meteorol. Soc., 124, 2517-2526.
    • D'Arrigo, R., R. Wilson, and A. Tudhope (2009), The impact of volcanic forcing on tropical temperatures during the past four centuries, Nat. Geosci., 2, 51-56.
    • Fischer, E. M., J. Luterbacher, E. Zorita, S. F. B. Tett, C. Casty, and H. Wanner (2007), European climate response to tropical volcanic eruptions over the last half millenium, Geophys. Res. Lett., 34, L05707, doi:10.1029/2006GL027992.
    • Gleckler, P. J., K. AchutaRao, J. M. Gregory, B. D. Santer, K. E. Taylor, and T. M. L. Wigley (2006), Krakatoa lives: the effect of volcanic eruptions on ocean heat content and thermal expansion, Geophys. Res. Lett., 33, L17702, doi:10.1029/2006GL026771.
    • Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mithcell, and R. A. Wood (2000), The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments, Clim. Dyn., 16, 147-168.
    • Graf, H. F., I. Kirchner, A. Robock, and I. Schult (1993), Pinatubo eruption winter climate effects: Model versus observations, Clim. Dyn., 9, 81-93.
    • Gregory, J. M., W. J. Ingram, M. A. Palmer, G. S. Jones, P. A. Stott, R. B. Thorpe, J. A. Lowe, T. C. Johns, and K. D. Williams (2004), A new method for diagnosing radiative forcing and climate sensitivity, Geophys. Res. Lett., 31, L03205, doi:10.1029/2003GL018747.
    • Grudd, H. (2008), Torneträsk tree‐ring width and density AD 500-2004: A test of climatic sensitivity and a new 1500‐year reconstruction of north Fennoscandian summers, Clim. Dyn., 31(7), 843-857.
    • Hansen, J., A. Lacis, R. Ruedy, and M. Sato (1992), Potential climate impact of Mount Pinatubo eruption, Geophys. Res. Lett., 19, 215-218.
    • Hantemirov, R., and S. Shiyatov (2002), A continuous multimillennial ring‐width chronology in Yamal, northwestern Siberia, Holocene, 12(6), 717-726.
    • Hegerl, G., F. W. Zwiers, P. Braconnot, N. Gillett, Y. Luo, J. Marengo Orsini, N. Nicholls, J. Penner, and P. Stott (2007), Understanding and attributing climate change, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., page numbers?, Cambridge Univ. Press, Cambridge, U. K.
    • Hewitt, C. D., A. J. Broccoli, J. F. B. Mitchell, and R. J. Stouffer (2001), A coupled model study of the last glacial maximum: Was part of the North Atlantic relatively warm?, Geophys. Res. Lett., 27, 1571-1574.
    • Houghton, J., Y. Ding, D. Griggs, M. Noguer, P. van der Linden, X. Dai, K. Maskell, and C. Johnson (Eds.) (2001), Climate Change 2001: The Scientific Basis, Cambridge Univ. Press, Cambridge, U. K.
    • Jacoby, G., N. Lovelius, O. Shumilov, O. Raspopov, J. Karbainov, and D. Frank (2000), Long‐term temperature trends and tree growth in the Taymir region of northern Siberia, Quat. Res., 53(3), 312-318.
    • Johns, T. C., et al. (2003), Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios, Clim. Dyn., 20, 583-612.
    • Jones, G., J. Gregory, P. Stott, S. Tett, and R. Thorpe (2005), An AOGCM simulation of the climate response to a volcanic super‐eruption, Clim. Dyn., 25(78), 725-739.
    • Kirchner, I., G. L. Stenchikov, H. F. Graf, A. Robock, and J. C. Antuna (1999), Climate model simulation of winter warming and summer cooling following the 1991 Mount Pinatubo volcanic eruption, J. Geophys. Res., 104(D16), 19,053-19,055.
    • Kodera, K. (1994), Influence of volcanic eruptions on the troposphere through stratospheric dynamical processes in the Northern Hemisphere winter, J. Geophys. Res., 99(D1), 1273-1282.
    • Labitzke, K., and H. van Loon (1989), The southern oscillation. Part IX: The influence of volcanic eruptions on the southern oscillation in the stratosphere., J. Clim., 2, 1223-1226.
    • Luckman, B., and R. Wilson (2005), Summer temperatures in the Canadian Rockies during the last millennium: A revised record, Clim. Dyn., 24(2), 131-144.
    • Luterbacher, J., D. Dietrich, E. Xoplaki, M. Grosjean, and H. Wanner (2004), European seasonal and annual temperature variability, trends, and extremes since 1500, Science, 303(5663), 1499-1503.
    • McCormick, M. P., L. W. Thomason, and C. R. Trepte (1995), Atmospheric effects of the Mt Pinatubo eruption, Nature, 373, 399-404.
    • Meier, N., T. Rutishauser, C. Pfister, H. Wanner, and J. Luterbacher (2007), Grape harvest dates as a proxy for Swiss April to August temperature reconstructions back to AD 1480, Geophys. Res. Lett., 34, L20705, doi:10.1029/2007GL031381.
    • Minnis, P., E. F. Harrison, L. L. Stowe, G. G. Gibson, F. M. Denn, D. R. Doelling, and W. L. Smith Jr. (1993), Radiative climate forcing by the Mount Pinatubo eruption, Science, 259(5100), 1411-1415.
    • Moore, J., K. Hughen, G. Miller, and J. Overpeck (2001), Little Ice Age recorded in summer temperature reconstruction from vared sediments of Donard Lake, Baffin Island, Canada, J. Paleolimnol., 25(4), 503-517.
    • Niemeier, U., C. Timmreck, H.‐F. Graf, S. Kinne, S. Rast, and S. Self (2009), Initial fate of fine ash and sulfur from large volcanic eruptions, Atmos. Chem. Phys., 9, 9043-9057.
    • Oppenheimer, C. (2002), Limited global change due to the largest known quaternary eruption, Toba 74 kyr BP, Quat. Sci. Rev., 21, 1593-1609.
    • Oppenheimer, C. (2003), Climatic, envronmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815, Progr. Phys. Geogr., 27(2), 230-259.
    • Ortileb, L. (2000), El Niño and the Southern Oscillation: Multiscale Variability and Global and Regional Impacts, pp. 207-295, Cambridge Univ. Press, Cambridge, U. K.
    • Pinto, J. P., R. P. Turco, and O. B. Toon (1989), Self‐limiting physical and chemical effects in volcanic eruption clouds, J. Geophys. Res., 94(D8), 11,165-11,174.
    • Pollack, J. B., O. B. Toon, C. Sagan, A. Summers, B. Baldwin, and W. V. Camp (1976), Volcanic explosions and climate change: a theoretical assessment, J. Geophys. Res., 81, 1071-1083.
    • Pope, V. D., M. L. Gallani, P. R. Rowntree, and R. A. Stratton (2000), The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3, Clim. Dyn., 16, 123-146.
    • Ramachandran, S., V. Ramaswamy, G. L. Stenchikov, and A. Robock (2000), Radiative impact of the Mount Pinatubo volcanic eruption: Lower stratospheric response, J. Geophys. Res., 105(D19), 24,409- 24,429.
    • Rampino, M., and S. Self (1992), Volcanic winter and accelerated glaciation following the Toba super‐eruption, Nature, 359, 50-52.
    • Rampino, M. R., and S. Self (1993), Climate‐Volcanism feedback and the Toba eruption of 74,000 years ago, Quat. Res., 40, 269-280.
    • Randall, D. A., et al. (2007), Cilmate models and their evaluation, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, Cambridge, U. K.
    • Rind, D., N. K. Balachandran, and R. Suozzo (1992), Climate change and middle atmosphere. Part II: The impact of volcanic aerosols., J. Clim., 5, 189-208.
    • Robock, A. (2000), Volcanic eruptions and climate, Rev. Geophys., 38(2), 191-219.
    • Robock, A., and J. Mao (1992), Winter warming from large volcanic eruptions, Geophys. Res. Lett., 12(24), 2405-2408.
    • Robock, A., C. Ammann, L. Oman, D. Shindell, S. Levis, and G. Stenchikov (2009), Did the Toba volcanic eruption of 74 ka B.P. produce widespread glaciation?, J. Geophys. Res., 114, D10107, doi:10.1029/2008JD011652.
    • Salzer, M., and K. Kipfmueller (2005), Reconstructed temperature and precipitation on a millennial timescale from tree‐rings in the southern Colorado plateau, U.S.A., Clim. Change, 70(23), 465-487, doi:10.1007/ s10584-005-5922-3.
    • Santer, B., T. Wigley, C. Doutriaux, J. Boyle, J. Hansen, P. Jones, G. Meehl, E. Roeckner, S. Sengupta, and K. Taylor (2001), Accounting for the effects of volcanoes and ENSO in comparisons of modeled and observed temperature trends, J. Geophys. Res., 106, 28,033-28,060, doi:10.1029/2000JD000189.
    • Sato, M., J. E. Hansen, M. P. McCormick, and J. B. Pollack (1993), Stratospheric aerosol optical depths, 1850‐1990, J. Geophys. Res., 98(D12), 22,987-22,994.
    • Schneider, D. P., C. M. Ammann, B. L. Otto‐Bliesner, and D. S. Kaufman (2009), Climate response to large, high‐latitude and low‐latitude volcanic eruptions in the Community Climate System Model, J. Geophys. Res., 114, D15101, doi:10.1029/2008JD011222.
    • Seber, G., and C. Wild (2003), Nonlinear Regression, John Wiley, Hoboken, N. J.
    • Shindell, D. T., G. A. Schmidt, M. E. Mann, and G. Faluvegi (2004), Dynamic winter climate response to large tropical volcanic eruptions since 1600, J. Geophys. Res., 109, D05104, doi:10.1029/2003JD004151.
    • Sigurdsson, H. (1990), Evidence of volcanic loading of the atmosphere and climate response, Global Planet. Change, 3, 277-289.
    • Slingo, A. (1989), A GCM parameterization for the shortwave radiative properties of water clouds, J. Atmos. Sci., 46(10), 1419-1427.
    • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor, and H. Miller (Eds.) (2008), Climate Change 2007: The Physical Science Basis, Cambridge Univ. Press, Cambridge, U. K.
    • Stainforth, D. A., et al. (2005), Uncertainty in prediction of the climate response to rising levels of greenhouse gases, Nature, 433, 403-406.
    • Stenchikov, G., I. Kirchner, A. Robock, H. F. Graf, J. C. Antuna, R. G. Grainger, A. Lambert, and L. Thomason (1998), Radiative forcing from the 1991 Mount Pinatubo volcanic eruption, J. Geophys. Res., 103(D12), 13,837-13,857.
    • Stenchikov, G., A. Robock, V. Ramaswamy, M. Schwarzkopf, K. Hamilton, and S. Ramachandran (2002), Arctic Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depletion, J. Geophys. Res., 107(D24), 4803, doi:10.1029/2002JD002090.
    • Stenchikov, G., K. Hamilton, R. J. Stouffer, A. Robock, V. Ramaswamy, B. Santer, and H.‐F. Graf (2006), Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models, J. Geophys. Res., 111, D07107, doi:10.1029/2005JD006286.
    • Stothers, R. B. (1984), The great Tambora eruption in 1815 and its aftermath, Science, 224, 1191-1198.
    • Stott, P., S. F. B. Tett, G. S. Jones, M. R. Allen, J. F. B. Mitchell, and G. J. Jenkins (2000), External control of 20th century temperature by natural and anthropogenic forcing, Science, 290, 2133-2137.
    • Szeicz, J., and G. MacDonald (1995), Dendroclimatic reconstruction of summer temperatures in northwestern Canada since AD 1638 based on age‐dependent modeling, Quat. Res., 44(2), 257-266.
    • Tan, M., T. Liu, J. Hou, X. Qin, H. Zhang, and T. Li (2003), Cyclic rapid warming on centennial‐scale revealed by a 2650‐year stalagmite record of warm season temperature, Geophys. Res. Lett., 30(12), 1617, doi:10.1029/2003GL017352.
    • Tett, S. F. B., et al. (2002), Estimation of natural and anthropogenic contributions to 20th century temperature change, J. Geophys. Res., 107(D16), 4306, doi:10.1029/2000JD000028.
    • Thordarson, T., and S. Self (2003), Atmospheric and environmental effects of the 1783-1784 Laki eruption: A review and reassessment, J. Geophys. Res., 108(D1), 4011, doi:10.1029/2001JD002042.
    • Timmreck, C., and H. F. Graf (2000), A microphysical model for simulation of stratospheric aerosol in a climate model, Meteorol. Z., 9(5), 263- 282.
    • Timmreck, C., H. F. Graf, and J. Feichter (1999), Simulation of Mt Pinatubo volcanic aerosol with the Hamburg climate model ECHAM4, Theor. Appl. Climatol., 62, 85-108.
    • Timmreck, C., S. Lorenz, T. Crowley, S. Kinne, T. Raddatz, M. Thomas, and J. Jungclaus (2009), Limited temperature response to the very large AD 1258 volcanic eruption, Geophys. Res. Lett., 36, L21708, doi:10.1029/2009GL040083.
    • Trenberth, K., and J. Caron (2000), The Southern Oscillation revisited: Sea level pressures, surface temperatures, and precipitation, J. Clim., 13, 4358-4365.
    • Turner, A. G., P. M. Inness, and J. M. Slingo (2005), The role of the basic state in the ENSO‐monsoon relationship and implications for predictability, Q. J. R. Meteorol. Soc., 131(607), 781-804.
    • Villalba, R., A. Lara, J. Boninsegna, M. Masiokas, S. Delgado, J. Aravena, F. Roig, A. Schmelter, A. Wolodarsky, and A. Ripalta (2003), Large‐scale temperature changes across the southern Andes: 20th‐century variations in the context of the past 400 years, Clim. Change, 59(1), 177-232.
    • Wiles, G., R. D'Arrigo, and G. Jacoby (1996), Temperature changes along the Gulf of Alaska and the Pacific Northwest coast modeled from coastal tree rings, Can. J. Forest Res., 26(3), 474-481.
    • Wolter, K., and M. S. Timlin (1998), Measuring the strength of ENSO events ‐ how does 1997/98 rank?, Weather, 53, 315-324.
    • World Meteorological Organization (1983), Report of the experts meeting on aerosols and their climatic effects, Rep. WCP‐55, Geneva, Switzerland.
    • Xoplaki, E., J. Luterbacher, H. Paeth, D. Dietrich, N. Steiner, M. Grosjean, and H. Wanner (2005), European spring and autumn temperature variability and change of extremes over the last half millennium, Geophys. Res. Lett., 32, L15713, doi:10.1029/2005GL023424.
    • Zielinski, G. A., L. D. Mayewski, S. Whitlow, M. Twickler, and K. Taylor (1996), Potential atmospheric impact of the Toba mega‐eruption 71,000 years ago, Geophys. Res. Lett., 23(8), 837-840. B. M. Harris and E. J. Highwood, Department of Meteorology, University of Reading, Earley Gate, PO Box 243, Reading RG6 6BB, UK. (; )
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article