Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Cuellar-Franca, R.; García-Gutiérrez, P.; Taylor, R.; Hardacre, C.; Azapagic, A. (2016)
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried and R. D. Srivastava, Advances in CO2 capture technology-The U.S. Department of Energy's Carbon Sequestration Program, Int. J. Greenhouse Gas Control, 2008, 2(1), 9-20.
    • 2 EASAC, Carbon capture and storage in Europe, European Academies Science Advisory Council, ISBN: 978-3-8047-3180-6. Available in: http://www.easac.eu/ leadmin/Reports/Easac_13_CCS_Web_Complete.pdf, 2013.
    • 3 P. Styring, D. Jansen, H. de Coninck, H. Reith and K. Armstrong, Carbon Capture and Utilisation in the Green Economy. Centre for Low Carbon Futures, Available at: http://co2chem.co.uk/wp-content/uploads/2012/06/CCU%20in% 20the%20green%20economy%20report.pdf, 2011.
    • 4 R. Notz, H. P. Mangalapally and H. Hasse, Post combustion CO2 capture by reactive absorption: Pilot plant description and results of systematic studies with MEA, Int. J. Greenhouse Gas Control, 2012, 6, 84-112.
    • 5 E. S. Rubin, H. Mantripragada, A. Marks, P. Versteeg and J. Kitchin, The outlook for improved carbon capture technology, Prog. Energy Combust. Sci., 2012, 38(5), 630-671.
    • 6 L. Zhu, G. W. Schade and C. J. Nielsen, Real-Time Monitoring of Emissions from Monoethanolamine-Based Industrial Scale Carbon Capture Facilities, Environ. Sci. Technol., 2013, 47(24), 14306-14314.
    • 7 S. F. R. Taylor, C. McCrellis, C. McStay, J. Jacquemin, C. Hardacre, M. Mercy, et al., CO2 Capture in Wet and Dry Superbase Ionic Liquids, J. Solution Chem., 2015, 1-17.
    • 8 X. Zhang, X. Zhang, H. Dong, Z. Zhao, S. Zhang and Y. Huang, Carbon capture with ionic liquids: overview and progress, Energy Environ. Sci., 2012, 5(5), 6668- 6681.
    • 9 J. F. Brennecke and B. E. Gurkan, Ionic Liquids for CO2 Capture and Emission Reduction, J. Phys. Chem. Lett., 2010, 1(24), 3459-3464.
    • 10 B.-S. Lee and S.-T. Lin, Screening of ionic liquids for CO2 capture using the COSMO-SAC model, Chem. Eng. Sci., 2015, 121, 157-168.
    • 11 R. G. Reddy, Novel applications of ionic liquids in materials processing, J. Phys.: Conf. Ser., 2009, 165(1), 012076.
    • 12 ISO, ISO 14040-Environmental Management - Life Cycle Assessment - Principles and Framework. Available at: http://www.iso.org/iso/ catalogue_detail?csnumber¼37456; 2006.
    • 13 ISO. ISO 14044-Environmental Management - Life Cycle Assessment - Requirements and Guidelines. Available at:http://www.iso.org/iso/ catalogue_detail?csnumber¼38498, 2006.
    • 14 N. Hollingsworth, S. F. R. Taylor, M. T. Galante, J. Jacquemin, C. Longo, K. B. Holt, et al., Reduction of Carbon Dioxide to Formate at Low Overpotential Using a Superbase Ionic Liquid, Angew. Chem., Int. Ed., 2015, 54(47), 14164-14168.
    • 15 C. J. Bradaric, A. Downard, C. Kennedy, A. J. Robertson and Y. Zhou, Industrial preparation of phosphonium ionic liquids, Green Chem., 2003, 5(2), 143-152.
    • 16 M. M. Rauhut, H. A. Currier, A. M. Semsel and V. P. Wystrach, The Free Radical Addition of Phosphines to Unsaturated Compounds, J. Org. Chem., 1961, 26(12), 5138-5145.
    • 17 H. Demail, J. C. Schweickert and P. Le Gars, Process for the preparation of alkyl chlorides, US Pat. US 5723704 A. Available at: http://www.google.co.uk/patents/ US5723704. 1998.
    • 18 H. E. Petree, J. R. Pociask and G. Jt. Method for direct preparation for 1,2,4- triazole from hydrazine and formamide, US Pat. US 4267347 A. Available at: http://www.google.co.uk/patents/US4267347, 1981.
    • 19 Thinkstep, Gabi V6.4. Thinkstep, https://www.thinkstep.com/soware/gabi-lca/ , 2014.
    • 20 J. B. Guin´ee, M. Gorr´ee, R. Heijungs, G. Huppes, R. Kleijn and A. de Koning, Life cycle assessment: an operational guide to the ISO standards, Available at: http://media.leidenuniv.nl/legacy/new-dutch-lca-guide-part-1.pdf. 2001.
    • 21 R. M. Felder and R. W. Rousseau, Elementary Principles of Chemical Processes, ed. N. J. Hoboken, John Wiley & Sons, 2005.
    • 22 A. Mehrkesh and A. T. Karunanithi, Energetic Ionic Materials: How Green Are They? A Comparative Life Cycle Assessment Study, ACS Sustainable Chem. Eng., 2013, 1(4), 448-455.
    • 23 Ecoinvent, Ecoinvent database 2.1., Ecoinvent Centre, http:// www.ecoinvent.org/home.html, 2013.
    • 24 NCBI. 1-Hexene, National Center for Biotechnology Information. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/1-hexene#section¼Top, 2016.
    • 25 H. Hasturk, E. Goguet-Surmenian, A. Blackwood, C. Andry and A. Kantarci, 1- Tetradecanol Complex: Therapeutic Actions in Experimental Periodontitis, J. Periodontol., 2009, 80(7), 1103-1113.
    • 26 R. W. Gora, S. J. Grabowski and J. Leszczynski, Dimers of Formic Acid, Acetic Acid, Formamide and Pyrrole-2-carboxylic Acid: an Ab Initio Study, J. Phys. Chem. A, 2005, 109(29), 6397-6405.
    • 27 W. A. Rickelton, Phosphine and Its Derivatives, Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Inc., 2000.
    • 28 DOW, Material safety data sheet for Monoethanolamine, The DOW Chemical Company, Available at: http://msdssearch.dow.com/ PublishedLiteratureDOWCOM/dh_0044/0901b80380044789.pdf? lepath¼amines/pdfs/noreg/111-01388.pdf&fromPage¼GetDoc, 2003.
    • 29 H.-B. Xie, Y. Zhou, Y. Zhang and J. K. Johnson, Reaction Mechanism of Monoethanolamine with CO2 in Aqueous Solution from Molecular Modeling, J. Phys. Chem. A, 2010, 114(43), 11844-11852.
    • 30 T. L. Sønderby, K. B. Carlsen, P. L. Fosbøl, L. G. Kiørboe and N. von Solms, A new pilot absorber for CO2 capture from ue gases: Measuring and modelling capture with MEA solution, Int. J. Greenhouse Gas Control, 2013, 12, 181-192.
    • 31 M. R. M. Abu-Zahra, L. H. J. Schneiders, J. P. M. Niederer, P. H. M. Feron and G. F. Versteeg, CO2 capture from power plants: Part I. A parametric study of the technical performance based on monoethanolamine, Int. J. Greenhouse Gas Control, 2007, 1(1), 37-46.
    • 32 L. Assem and M. Takamiya, Phosphine: Toxicological overview, Health Protection Agency and Institute of Environment and Health, Craneld Univeristy, Available at: https://www.gov.uk/government/uploads/system/ uploads/attachment_data/le/338253/ HPA_Phosphine_toxicological_overview_v1.pdf, 2007.
    • 33 R. E. Hall, A. Kessler and A. R. Mclain, Process for the preparation of phosphonium salts and phosphine oxides starting with aluminum trialkyl, US Pat. US 3459808 A. Available at: http://www.google.co.uk/patents/ US3459808, 1969.
    • 34 M. Umeno and S. Takita, Preparation process of quaternary phosphonium hydroxide, US Pat. US 4761493 A, Available at: http://www.google.ch/patents/ US4761493, 1988.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article