Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Chattopadhyay, Krishna; Craig, Gavin A.; Kundu, Animesh; Bertolasi, Valerio; Murrie, Mark; Ray, Debashis (2016)
Publisher: American Chemical Society
Languages: English
Types: Article
Four different carboxylato bridges have been efficiently utilized for growth of three tetranuclear nickel(II) complexes [Ni4(μ3-H2L)2(μ3-OH)2(μ1,3-CH3CO2)2](ClO4)2 (1), [Ni4(μ3-H2L)2(μ3-OH)2(μ1,3-C2H5CO2)2](ClO4)2·1/2H2O (2), and [Ni4(μ3-H2L)2(μ3-OH)2(μ1,3-O2C-C6H4-pNO2)2](ClO4)(p-NO2-C6H4-CO2)·DMF·5H2O (3) and one dinuclear nickel(II)-based chain complex {[Ni2(μ-H2L)(μ1,3-O2CCH2Ph)2(H2O)](ClO4)·1/2(CH3OH)}n (4). These were obtained via the reaction of Ni(ClO4)2·6H2O with H3L [2,6-bis((2-(2-hydroxyethylamino)ethylimino)methyl)-4-methylphenol] and RCO2Na (R = CH3,C2H5, p-NO2C6H4, and PhCH2). This family of complexes is developed from {Ni2(μ-H2L)}3+ fragments following self-aggregation. The complexes were characterized by X-ray crystallography and magnetic measurements. The changes from acetate, propionate, and p-nitrobenzoate to phenylacetate groups resulted in two different types of coordination aggregation. These compounds are new examples of [Ni4] and [Ni2]n complexes where organization of the building motifs are guided by the type of the carboxylate groups responsible for in-situ generation and utilization of HO– bridges with alteration in the aggregation process within the same ligand environment. Studies on the magnetic behavior of the compounds reveal that the exchange coupling within 1–4 is predominantly antiferromagnetic in nature.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) (a) Aubin, S. M.; Dilley, N. R.; Pardi, L.; Krzystek, J.; Wemple, M.
    • W.; Christou, G.; Hendrickson, D. N. Resonant magnetization tunneling in the trigonal pyramidal MnIVMnIII3 complex [Mn4O3Cl(O2CCH3)3(dbm)3]. J. Am. Chem. Soc. 1998, 120 (20), 4991−5004.
    • 2003, 42 (3), 268−297. (c) Chen, S. Y.; Beedle, C. C.; Gan, P. R.; Lee, G. H.; Hill, S.; Yang, E. C. Half-integer spin heptanuclear singlemolecule magnet with an unusual MnIII6MnII exchange-coupled core.
    • Inorg. Chem. 2012, 51 (8), 4448−4457. (d) Figuerola, A.; Tangoulis, V.; Ribas, J.; Hartl, H.; Brüdgam, I.; Maestro, M.; Diaz, C. Synthesis, crystal structure, and magnetic studies of oxo-centered trinuclear chromium (III) complexes:[Cr3(μ3-O)(μ2-PhCOO)6(H2O)3]NO3· 4H2O·2CH3OH, a case of spin-frustrated system, and [Cr3(μ3-O)- (μ2-PhCOO)2(μ2-OCH2CH3)2(bpy)2(NCS)3], a new type of [Cr3O] core. Inorg. Chem. 2007, 46 (26), 11017−11024.
    • (2) (a) Hazra, S.; Koner, R.; Lemoine, P.; Sañudo, E.; Mohanta, S.
    • Syntheses, structures and magnetic properties of heterobridged dinuclear and cubane-type tetranuclear complexes of nickel(II) derived from a Schiff base ligand. Eur. J. Inorg. Chem. 2009, 2009, 3458−3466.
    • (b) Lu, Z.; Fan, T.; Guo, W.; Lu, J.; Fan, C. Synthesis, structure and magnetism of three cubane Cu (II) and Ni (II) complexes based on flexible Schiff-base ligands. Inorg. Chim. Acta 2013, 400, 191−196.
    • (3) Milios, C. J.; Winpenny, R. E. P. Cluster-based single-molecule magnets. Struct. Bonding (Berlin, Ger.) 2014, 164, 1−119.
    • (4) Carretta, S.; Santini, P.; Amoretti, G.; Affronte, M.; Candini, A.; Ghirri, A.; Tidmarsh, I. S.; Laye, R. H.; Shaw, R.; McInnes, E. J. L.
    • High-temperature slow relaxation of the magnetization in Ni10 magnetic molecules. Phys. Rev. Lett. 2006, 97, 207201.
    • (5) Krzystek, J.; Telser, J.; Pardi, L. A.; Goldberg, D. P.; Hoffman, B.
    • Inorg. Chem. 1999, 38, 6121−6129.
    • (6) (a) Gao, Y. Z.; Zhang, Y. A.; Zhang, J. Synthesis, structures, and magnetic properties of tetranuclear nickel and cobalt complexes with 2-mercaptobenzoxazole. Inorg. Chem. Commun. 2015, 54, 85−88.
    • Inorg. Chem. 2014, 53, 4325−4339.
    • (7) (a) Sieber, A.; Boskovic, C.; Bircher, R.; Waldmann, O.; Ochsenbein, S. T.; Chaboussant, G.; Güdel, H. U.; Kirchner, N.; van Slageren, J.; Wernsdorfer, W.; Neels, A.; Stoeckli-Evans, H.; Janssen, S.; Juranyi, F.; Mutka, H. Synthesis and spectroscopic characterization of a new family of Ni4 spin clusters. Inorg. Chem. 2005, 44, 4315− 4325. (b) Mandal, D.; Hong, C. S.; Kim, H. C.; Fun, H.-K.; Ray, D. A new [NiII4] distorted cubane assembly on four solvent derived μ3− OMe corners: Solvent dependent formation and cleavage of exogenous bridges. Polyhedron 2008, 27, 2372−2378. (c) Liu, S.; Wang, S.; Cao, F.; Fu, H.; Li, D.; Dou, J. Crystallization conditioncontrolled assembly of oxygen-bridged tetranuclear and hexanuclear Ni(II) clusters: syntheses, structures and properties. RSC Adv. 2012, 2, 1310−1313. (d) Tandon, S. S.; Bunge, S. D.; Rakosi, R.; Xu, Z.; Thompson, L. K. Self-assembly of mixed-valence Co(II/III) and Ni(II) clusters: azide-bridged 1D single chain coordination polymers comprised of tetranuclear units, tetranuclear Co(II/III) complexes, ferromagnetically coupled azide-bridged tetranuclear, and hexanuclear Ni(II) complexes: synthesis, structural, and magnetic properties.
    • Dalton Trans. 2009, 6536−6551. (e) Sarkar, M.; Cleŕac, R.; Mathonier̀e, C.; Hearns, N. G. R.; Bertolasi, V.; Ray, D. New μ4- oxido-bridged copper benzoate quasi-tetrahedron and bis-μ3-hydroxido-bridged copper azide and copper thiocyanate stepped cubanes: core conversion, structural diversity, and magnetic properties. Inorg.
    • Chem. 2010, 49, 6575−6585.
    • (8) (a) Papatriantafyllopoulou, C.; Stamatatos, T. C.; Wernsdorfer, W.; Teat, S. J.; Tasiopoulos, A. J.; Escuer, A.; Perlepes, S. P.
    • Combining azide, carboxylate, and 2-pyridyloximate ligands in transition-metal chemistry: Ferromagnetic NiII5 clusters with a bowtie skeleton. Inorg. Chem. 2010, 49, 10486−10496. (b) Ghosh, A. K.; Shatruk, M.; Bertolasi, V.; Pramanik, K.; Ray, D. Self-assembled tetraand pentanuclear nickel(II) aggregates from phenoxido-based ligandbound {Ni2} fragments: Carboxylate bridge controlled structures.
    • Inorg. Chem. 2013, 52, 13894−13903.
    • (9) (a) Mukherjee, S.; Weyhermüller, T.; Bothe, E.; Wieghardt, K.; Chaudhuri, P. Single-atom O-bridged urea in a dinickel(II) complex together with NiII4, CuII2 and CuII4 complexes of a pentadentate phenol-containing Schiff base with (O, N, O, N, O)-donor atoms. Eur.
    • J. Inorg. Chem. 2003, 2003, 863−875. (b) Colacio, E.; DomínguezVera, J. M.; Ghazi, M.; Kivekas̈, R.; Klinga, M.; Moreno, J. M. Singly anti-anti carboxylate-bridged zig-zag chain complexes from a carboxylate-containing tridentate Schiff base ligand and M(hfac)2 [M = MnII, NiII, and CuII]: Synthesis, crystal structure, and magnetic properties. Eur. J. Inorg. Chem. 1999, 1999, 441−445. (c) CañadillasDelgado, L.; Fabelo, O.; Pasań, J.; Delgado, F. S.; Lloret, F.; Julve, M.; Ruiz-Peŕez, C. Unusual (μ-aqua)bis(μ-carboxylate) bridge in homometallic M(II) (M = Mn, Co and Ni) two-dimensional compounds based on the 1,2,3,4-butanetetracarboxylic acid: Synthesis, structure, and magnetic properties. Inorg. Chem. 2007, 46 (18), 7458−7465.
    • (10) Chattopadhyay, K.; Shaw, B. K.; Saha, S. K.; Ray, D. Dalton Trans. 2016, 45, 6928−6938.
    • (11) Gagne, R. R.; Spiro, C. L.; Smith, T. J.; Hamann, C. A.; Thies, W. R.; Shiemke, A. K. The synthesis, redox properties, and ligand binding of heterobinuclear transition-metal macrocyclic ligand complexes. Measurement of an apparent delocalization energy in a mixed-valent copper (I) copper (II) complex. J. Am. Chem. Soc. 1981, 103, 4073−4081.
    • (12) (a) SAINT, SMART and XPREP, Siemens Analytical X-ray Instruments Inc., Madison, WI, 1995. (b) Sheldrick, G. M. SHELXS97, University of Göttingen, Göttingen, Germany, 1997. (c) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112−122. (d) WinGX-Version 2014.1, Farrugia, L. J. J. Appl. Crystallogr. 2012, 45, 849−854.10.1107/ S0021889812029111 (13) Sheldrick, G. M. SADABS Sof tware for Empirical Absorption Correction, University of Göttingen, Institute fur Anorganische Chemieder Universitat, Göttingen, Germany, 1999−2003.
    • (14) DIAMOND, Visual Crystal Structure Information System, version 3.1, Crystal Impact: Bonn, Germany, 2004.
    • (15) Liu, S.-Y.; Ma, Y. − P. Synthesis and crystal structures of dioxovanadium complexes with Schiff bases. Synth. React. Inorg., Met.- Org., Nano-Met. Chem. 2012, 42 (4), 603−607.
    • (16) Deacon, G. B.; Phillips, R. J. Relationships between the carbonoxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord. Chem. Rev. 1980, 33, 227−250.
    • (17) Pait, M.; Bauza,́ A.; Frontera, A.; Colacio, E.; Ray, D. A new family of Ni4 and Ni6 aggregates from the self-assembly of [Ni2] building units: Role of carboxylate and carbonate bridges. Inorg. Chem.
    • (18) Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed.; Wiley: New York, 1986.
    • (19) Kato, M.; Jonassen, H. B.; Fanning, J. C. Copper (II) complexes with subnormal magnetic moments. Chem. Rev. 1964, 64, 99−128.
    • (20) Buchanan, R. M.; Mashuta, M. S.; Oberhausen, K. J.; Richardson, J. F.; Li, Q.; Hendrickson, D. N. Active site model of urease: synthesis, structure, and magnetic properties of a binuclear nickel (II) complex containing a polyimidazole ligand. J. Am. Chem.
    • Soc. 1989, 111 (12), 4497−4498.
    • (21) Mandal, S.; Balamurugan, V.; Lloret, F.; Mukherjee, R.
    • Syntheses, X-ray structures, and physicochemical properties of phenoxo-bridged dinuclear nickel (II) complexes: kinetics of transesterification of 2-hydroxypropyl-p-nitrophenylphosphate. Inorg. Chem.
    • (22) (a) Ghosh, A. K.; Bauza, A.; Bertolasi, V.; Frontera, A.; Ray, D.
    • Dinuclear and heptanuclear nickel (II) complexes: Anion coordination induced ligand arm hydrolysis and aggregation around a nickel (II) core. Polyhedron 2013, 53, 32−39. (b) Chattopadhyay, T.; Mukherjee, M.; Mondal, A.; Maiti, P.; Banerjee, A.; Banu, K. S.; Bhattacharya, S.; Roy, B.; Chattopadhyay, D. J.; Mondal, T. K. A unique nickel system having versatile catalytic activity of biological significance. Inorg. Chem.
    • 2010, 49, 3121−3129. (c) Biswas, A.; Das, L. K.; Drew, M. G. B.; Aromi, G.; Gamez, P.; Ghosh, A. Synthesis, crystal structures, magnetic properties and catecholase activity of double phenoxido-bridged pentacoordinated dinuclear nickel (II) complexes derived from reduced Schiff-base ligands: mechanistic inference of catecholase activity. Inorg.
    • Chem. 2012, 51, 7993−8001.
    • (23) (a) Ghosh, A. K.; Shatruk, M.; Bertolasi, V.; Pramanik, K.; Ray, D. Self-Assembled Tetra-and Pentanuclear Nickel (II) Aggregates From Phenoxido-Based Ligand-Bound {Ni2} Fragments: Carboxylate Bridge Controlled Structures. Inorg. Chem. 2013, 52, 13894−13903.
    • (b) Pait, M.; Bauza,́ A.; Frontera, A.; Colacio, E.; Ray, D. A New Family of Ni4 and Ni6 Aggregates from the Self-Assembly of [Ni2] Building Units: Role of Carboxylate and Carbonate Bridges. Inorg.
    • Chem. 2015, 54, 4709−4723. (c) Jana, M. S.; Priego, J. L.; JimeńezAparicio, R.; Mondal, T. K. Novel tetranuclear Ni (II) Schiff base complex containing Ni4O4 cubane core: Synthesis, X-ray structure, spectra and magnetic properties. Spectrochim. Acta, Part A 2014, 133, 714−719. (d) Mandal, D.; Bertolasi, V.; Ribas-Ariño, J.; Aromí, G.; Ray, D. Self-Assembly of an Azido-Bridged [NiII6] Cluster Featuring Four Fused Defective Cubanes. Inorg. Chem. 2008, 47, 3465−3467.
    • (24) Chilton, N. F.; Anderson, R. P.; Turner, L. D.; Soncini, A.; Murray, K. S. PHI: A powerful new program for the analysis of anisotropic monomeric and exchange-coupled polynuclear d-and fblock complexes. J. Comput. Chem. 2013, 34, 1164−1175.
    • (25) (a) Karmakar, S.; Khanra, S. Polynuclear coordination compounds: a magnetostructural study of ferromagnetically coupled Ni4O4 cubane core motif. CrystEngComm 2014, 16, 2371−2383.
    • P. Synthesis, structure, and magnetic properties of the low-symmetry tetranuclear cubane-like nickel complex [Ni4(pypentO) (pym)(μ3- OH)2(μ-Oac)2(NCS)2(OH2)]. Inorg. Chem. 2000, 39, 5515−5519.
    • (c) Halcrow, M. A.; Sun, J. S.; Huffman, J. C.; Christou, G. Structural and magnetic properties of [Ni4(μ3−OMe)4(dbm)4(MeOH)4] and [Ni4(η1,μ3−N3)4(dbm)4(EtOH)4]. Magnetostructural correlations for [Ni4X4]4+ cubane complexes. Inorg. Chem. 1995, 34, 4167−4177.
    • (26) Das, A.; Klinke, F. J.; Demeshko, S.; Meyer, S.; Dechert, S.; Meyer, F. Reversible solvatomagnetic effect in novel tetranuclear cubane-type Ni4 complexes and magnetostructural correlations for the [Ni4(μ3-O)4] core. Inorg. Chem. 2012, 51, 8141−8149.
    • (27) (a) Alexopoulou, K. I.; Raptopoulou, C. P.; Psycharis, V.; Terzis, A.; Tangoulis, V.; Stamatatos, T. C.; Perlepes, S. P. Solvent-dependent access to two different NiII4 core topologies from the first use of pyridine-2,6-dimethanol in nickel (II) cluster chemistry. Aust. J. Chem.
    • 2012, 65, 1608−1619. (b) Iijima, F.; Hasumi, K.; Shiga, T.; Newton, G. N.; Oshio, H. Linking magnetic clusters: Ferrimagnetic interactions in a nonanuclear nickel(II) cluster. Chem. Lett. 2012, 41, 691−692.
    • (c) Efthymiou, C. G.; Papatriantafyllopoulou, C.; Alexopoulou, N. I.; Raptopoulou, C. P.; Bocǎ, R.; Mrozinski, J.; Bakalbassis, E. G.; Perlepes, S. P. A mononuclear complex and a cubane cluster from the initial use of 2-(hydroxymethyl) pyridine in nickel (II) carboxylate chemistry. Polyhedron 2009, 28 (15), 3373−3381. (d) Aromí, G.; Batsanov, A. S.; Christian, P.; Helliwell, M.; Roubeau, O.; Timco, G.
    • (28) (a) Cortijo, M.; Delgado-Martinez, P.; Gonzaĺez-Prieto, R.; Herrero, S.; Jimeńez-Aparicio, R.; Perles, J.; Priego, J. L.; Torres, M. R.
    • Microwave and solvothermal methods for the synthesis of nickel and ruthenium complexes with 9-anthracene carboxylate ligand. Inorg.
    • Chim. Acta 2015, 424, 176−185. (b) Piovezan, C.; Silva, J. M. R.; Neves, A.; Bortoluzzi, A. J.; Haase, W.; Tomkowicz, Z.; Castellano, E.
    • E.; Hough, T. C.; Rossi, L. M. Design of a dinuclear nickel (II) bioinspired hydrolase to bind covalently to silica surfaces: synthesis, magnetism, and reactivity studies. Inorg. Chem. 2012, 51, 6104−6115.
    • (c) Greatti, A.; Scarpellini, M.; Peralta, R. A.; Casellato, A.; Bortoluzzi, A. J.; Xavier, F. R.; Jovito, R.; de Brito, M. A.; Szpoganicz, B.; Tomkowicz, Z.; Rams, M. Synthesis, structure, and physicochemical properties of dinuclear NiII complexes as highly efficient functional models of phosphohydrolases. Inorg. Chem. 2008, 47, 1107−1119.
    • (d) Sakiyama, H.; Suzuki, T.; Ono, K.; Ito, R.; Watanabe, Y.; Yamasaki, M.; Mikuriya, M. Synthesis, structure, and magnetic properties of dinuclear nickel(II) complexes with a phenol-based dinucleating ligand with four methoxyethyl chelating arms. Inorg. Chim. Acta 2005, 358 (6), 1897−1903. (e) Adams, H.; Bradshaw, D.; Fenton, D. E.
    • Dinuclear nickel(II) and zinc(II) complexes of 2,6-bis[{bis(2- pyridylmethyl)amino}methyl]-4-methylphenol. Inorg. Chim. Acta 2002, 332 (1), 195−200.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Cite this article