LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Radel, Gaby; Shine, Keith P.; Ptashnik, Igor V. (2015)
Publisher: Royal Meteorological Society
Languages: English
Types: Article
Subjects:
Identifiers:doi:10.1002/qj.2385
Recent laboratory measurements show that absorption by the water vapour continuum in near-infrared windows may be about an order of magnitude higher than assumed in many radiation codes. The radiative impact of the continuum at visible and near-infrared wavelengths is examined for the present day and for a possible future warmer climate (with a global-mean total column water increase of 33%). The calculations use a continuum model frequently used in climate models (‘CKD’) and a continuum model where absorption is enhanced at wavelengths greater than 1 µm based on recent measurements (‘CAVIAR’). The continuum predominantly changes the partitioning between solar radiation absorbed by the surface and the atmosphere; changes in top-of-atmosphere net irradiances are smaller. The global-mean clear-sky atmospheric absorption is enhanced by 1.5 W m−2 (about 2%) and 2.8 W m−2 (about 3.5%) for CKD and CAVIAR respectively, relative to a hypothetical no-continuum case, with all-sky enhancements about 80% of these values. The continuum is, in relative terms, more important for radiation budget changes between the present day and a possible future climate. Relative to the no-continuum case, the increase in global-mean clear-sky absorption is 8% higher using CKD and almost 20% higher using CAVIAR; all-sky enhancements are about half these values. The effect of the continuum is estimated for the solar component of the water vapour feedback, the reduction in downward surface irradiance and precipitation change in a warmer world. For CKD and CAVIAR respectively, and relative to the no-continuum case, the solar component of the water vapour feedback is enhanced by about 4 and 9%, the change in clear-sky downward surface irradiance is 7 and 18% more negative, and the global-mean precipitation response decreases by 1 and 4%. There is a continued need for improved continuum measurements, especially at atmospheric temperatures and at wavelengths below 2 µm.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Allen MR, Ingram WJ. 2002. Constraints on future changes in climate and the hydrologic cycle. Nature 419: 224-232, doi: 10.1038/nature01092.
    • Baranov YI. 2011. The continuum absorption of H2O-N2 mixtures in the 2000-3250 cm−1 spectral region at temperatures from 326-363 K. J. Quant. Spectrosc. Radiat. Transfer 112: 2281-2286, doi: 10.1016/j.jqsrt.2011.06.005.
    • Baranov YI, Lafferty WJ. 2011. The water vapor continuum and selective absorption in the 3 to 5 μm spectral region at temperatures from 311 to 363 K. J. Quant. Spectrosc. Radiat. Transfer 112: 1304-1313, doi: 10.1016/j.jqsrt.2011.01.024.
    • Baranov YI, Lafferty WJ. 2012. The water vapour self- and water-nitrogen continuum absorption in the 1000 and 2500 cm−1 atmospheric windows. Philos. Trans. R. Soc. A 370: 2578-2589, doi: 10.1098/rsta.2011.0234.
    • Bicknell WE, Cecca SD, Griffin MK, Swartz SD, Flusberg A. 2006. Search for low-absorption regions in the 1.6 and 2.1 μm atmospheric windows. J. Dir. Energy 2: 151-161.
    • Burch DE, Alt RT. 1984. 'Continuum absorption by H2O in the 700-1200 cm−1 and 2400-2800 cm−1 windows', Scientific Report AFGL-TR-84-0128. Air Force Geophysics Laboratory: Hanscom Air Force Base, MA.
    • Collins WD, Lee-Taylor JM, Edwards DP, Francis GL. 2006a. Effects of increased near-infrared absorption by water vapor on the climate system. J. Geophys. Res. 111: D18109, doi: 10.1029/2005JD006796.
    • Collins WD, Ramaswamy V, Schwarzkopf MD, Sun Y, Portmann RW, Fu Q, Casanova SEB, Dufresne JL, Fillmore DW, Forster PMD, Galin VY, Gohar LK, Ingram WJ, Kratz DP, Lefebvre MP, Li J, Marquet P, Oinas V, Tsushima Y, Uchiyama T, Zhong WY. 2006b. Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). J. Geophys. Res. 111: D14317, doi: 10.1029/2005JD006713.
    • Colman RA. 2001. On the vertical extent of atmospheric feedbacks. Clim. Dyn. 17: 391-405, doi: 10.1007/s003820000111.
    • Colman R. 2003. A comparison of climate feedbacks in general circulation models. Clim. Dyn. 20: 865-873, doi: 10.1007/s00382-003-0310-z.
    • Edwards JM, Slingo A. 1996. Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Q. J. R. Meteorol. Soc. 122: 689-719, doi: 10.1002/qj.49712253107.
    • Garratt JR, O'Brien DM, Dix MR, Murphy JM, Stephens GL, Wild M. 1999. Surface radiation fluxes in transient climate simulations. Global Planet. Change 20: 33-55, doi: 10.1016/s0921-8181(98)00059-9.
    • Haywood JM, Bellouin N, Jones A, Boucher O, Wild M, Shine KP. 2011. The roles of aerosol, water vapor and cloud in future global dimming/ brightening. J. Geophys. Res. 116: D20203, doi: 10.1029/2011JD016000.
    • Kato S, Loeb NG, Rose FG, Doelling DR, Rutan DA, Caldwell TE, Yu L, Weller RA. 2013. Surface irradiances consistent with CERES-derived topof-atmosphere shortwave and longwave irradiances. J. Clim. 26: 2719-2740, doi: 10.1175/JCLI-D-12-00436.1.
    • Kiehl JT, Trenberth KE. 1997. Earth's annual global mean energy budget. Bull. Am. Meteorol. Soc. 78: 197-208, doi: 10.1175/1520-0477(1997) 078<0197:EAGMEB>2.0.CO;2.
    • Kim D, Ramanathan V. 2012. Improved estimates and understanding of global albedo and atmospheric solar absorption. Geophys. Res. Lett. 39: L24704, doi: 10.1029/2012GL053757.
    • Li D, Shine KP. 1995. 'A 4-dimensional ozone climatology for UGAMP models', UGAMP Internal report 35. Department of Meteorology, University of Reading: Reading, UK.
    • Mitsel' AA, Ptashnik IV, Firsov KM, Fomin BAB. 1995. Efficient technique for line-by-line calculating the transmittance of the absorbing atmosphere. Atmos. Oceanic Opt. 8: 1547 - 1551.
    • Mlawer EJ, Payne VH, Moncet JL, Delamere JS, Alvarado MJ, Tobin DC. 2012. Development and recent evaluation of the MT CKD model of continuum absorption. Philos. Trans. R. Soc. A 370: 2520 - 2556, doi: 10.1098/rsta. 2011.0295.
    • Mondelain D, Aradj A, Kassi S, Campargue A. 2013. The water vapour selfcontinuum by CRDS at room temperature in the 1.6 μm transparency window. J. Quant. Spectrosc. Radiat. Transfer 130: 381 - 391, doi: 10.1016/j.jqsrt. 2013.07.006.
    • Paynter DJ, Ramaswamy V. 2011. An assessment of recent water vapor continuum measurements upon longwave and shortwave radiative transfer. J. Geophys. Res. 116: D20302, doi: 10.1029/2010JD015505.
    • Paynter D, Ramaswamy V. 2012. Variations in water vapor continuum radiative transfer with atmospheric conditions. J. Geophys. Res. 117: D16310, doi: 10.1029/2012JD017504.
    • Paynter DJ, Ptashnik IV, Shine KP, Smith KM, McPheat R, Williams RG. 2009. Laboratory measurements of the water vapor continuum in the 1200 - 8000 cm−1 region between 293 K and 351 K. J. Geophys. Res. 114: D21301, doi: 10.1029/2008JD011355.
    • Ptashnik IV, Shine KP. 2003. Calculation of solar radiative fluxes in the atmosphere: The effect of updates in spectroscopic data. Atmos. Oceanic Opt. 16: 251 - 255.
    • Ptashnik IV, Smith KM, Shine KP, Newnham DA. 2004. Laboratory measurements of water vapour continuum absorption in spectral region 5000 - 5600 cm−1: Evidence for water dimers. Q. J. R. Meteorol. Soc. 130: 2391 - 2408, doi: 10.1256/qj.03.178.
    • Ptashnik IV, McPheat RA, Shine KP, Smith KM, Williams RG. 2011a. Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements. J. Geophys. Res. 116: D16305, doi: 10.1029/ 2011JD015603.
    • Ptashnik IV, Shine KP, Vigasin AA. 2011b. Water vapour self-continuum and water dimers: 1. Analysis of recent work. J. Quant. Spectrosc. Radiat. Transfer 112: 1286 - 1303, doi: 10.1016/j.jqsrt.2011.01.012.
    • Ptashnik IV, McPheat RA, Shine KP, Smith KM, Williams RG. 2012. Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements. Philos. Trans. R. Soc. A 370: 2557 - 2577, doi: 10.1098/ rsta.2011.0218.
    • Ptashnik IV, Petrova TM, Ponomarev YN, Shine KP, Solodov AA, Solodov AM. 2013. Near-infrared water vapour self-continuum at close to room temperature. J. Quant. Spectrosc. Radiat. Transfer 120: 23 - 35, doi: 10.1016/j.jqsrt. 2013.02.016.
    • Rossow WB, Schiffer RA. 1999. Advances in understanding clouds from ISCCP. Bull. Am. Meteorol. Soc. 80: 2261 - 2287, doi: 10.1175/1520-0477(1999)080 <2261:AIUCFI>2.0.CO;2.
    • Rothman LS, Gordon IE, Babikov Y, Barbe A, Benner DC, Bernath PF, Birk M, Bizzocchi L, Boudon V, Brown LR, Campargue A, Chance K, Cohen EA, Coudert LH, Devi VM, Drouin BJ, Fayt A, Flaud J-M, Gamache RR, Harrison JJ, Hartmann J-M, Hill C, Hodges JT, Jacquemart D, Jolly A, Lamouroux J, Le Roy RJ, Li G, Long DA, Lyulin OM, Mackie CJ, Massie ST, Mikhailenko S, Mu¨ ller HSP, Naumenko OV, Nikitin AV, Orphal J, Perevalov V, Perrin A, Polovtseva ER, Richard C, Smith MAH, Starikova E, Sung K, Tashkun S, Tennyson J, Toon GC, Tyuterev VG, Wagner G. 2013. The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 130: 4 - 50, doi: 10.1016/j.jqsrt.2013.07.002.
    • Shine KP, Ptashnik IV, Ra¨del G. 2012. The water vapour continuum: Brief history and recent developments. Surv. Geophys. 33: 535 - 555, doi: 10.1007/ s10712-011-9170-y.
    • Stephens GL, Ellis TD. 2008. Controls of global-mean precipitation increases in global warming GCM experiments. J. Clim. 21: 6141 - 6155, doi: 10.1175/2008jcli2144.1.
    • Stephens GL, Li JL, Wild M, Clayson CA, Loeb N, Kato S, L'Ecuyer T, Stackhouse PW, Lebsock M, Andrews T. 2012. An update on Earth's energy balance in light of the latest global observations. Nat. Geosci. 5: 691 - 696, doi: 10.1038/ngeo1580.
    • Sudradjat A, Ferraro RR, Fiorino M. 2005. A comparison of total precipitable water between reanalyses and NVAP. J. Clim. 18: 1790 - 1807, doi: 10.1175/jcli3379.1.
    • Takahashi K. 2009. The global hydrological cycle and atmospheric shortwave absorption in climate models under CO2forcing. J. Clim. 22: 5667 - 5675, doi: 10.1175/2009jcli2674.1.
    • Tallis L, Coleman M, Gardiner T, Ptashnik IV, Shine KP. 2011. Assessment of the consistency of H2O line intensities over the near-infrared using sunpointing ground-based Fourier transform spectroscopy. J. Quant. Spectrosc. Radiat. Transfer 112: 2268 - 2280, doi: 10.1016/j.jqsrt.2011.06.007.
    • Trenberth KE, Fasullo JT. 2012. Tracking Earth's energy: From El Nin˜o to global warming. Surv. Geophys. 33: 413 - 426, doi: 10.1007/s10712-011- 9150-2.
    • Uppala SM, Ka˚llberg PW, Simmons AJ, Andrae U, Bechtold VD, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Ho´ lm E, Hoskins BJ, Isaksen L, Janssen P, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J. 2005. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 131: 2961 - 3012, doi: 10.1256/qj.04.176.
    • Vonder Haar TH, Bytheway JL, Forsythe JM. 2012. Weather and climate analyses using improved global water vapor observations. Geophys. Res. Lett. 39: L15802, doi: 10.1029/2012GL052094.
    • Wild M, Folini D, Schar C, Loeb N, Dutton EG, Konig-Langlo G. 2013. The global energy balance from a surface perspective. Clim. Dyn. 40: 3107 - 3134, doi: 10.1007/s00382-012-1569-8.
    • Zhong WY, Haigh JD, Belmiloud D, Schermaul R, Tennyson J. 2001. The impact of new water vapour spectral line parameters on the calculation of atmospheric absorption. Q. J. R. Meteorol. Soc. 127: 1615 - 1626, doi: 10.1002/qj.49712757508.
    • Zhong WY, Haigh JD, Belmiloud D, Schermaul R, Tennyson J. 2002. Note on 'The impact of new water vapour spectral line parameters on the calculation atmospheric absorption' by Wenyi Zhong et al. (July A, 2001, 127, 1615 - 1626). Q. J. R. Meteorol. Soc. 128: 1387 - 1388, doi: 10.1256/ 003590002320373346.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article