LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Mulholland, Padraig J.; Redmond, Tony; Garway-Heath, David F.; Zlatkova, Margarita B.; Anderson, Roger S. (2015)
Publisher: Association for Research in Vision and Ophthalmology
Languages: English
Types: Article
Subjects: RE

Classified by OpenAIRE into

mesheuropmc: genetic structures
PURPOSE: To investigate achromatic temporal summation under the conditions of standard automated perimetry (SAP), using a Goldmann III (GIII) stimulus and a stimulus scaled to the local area of complete spatial summation (Ricco's area) in open-angle glaucoma (OAG) patients and healthy age-similar control participants.\ud METHODS: Twenty patients with OAG (mean age, 63 years; mean MD, -3.3 dB) and 15 healthy controls (mean age, 64 years) were recruited. Contrast thresholds were measured for seven stimulus durations (1-24 frames, 1.8-191.9 ms) using a near-GIII stimulus (0.48° diameter) and stimuli scaled to the local Ricco's area, in four oblique meridians at 8.8° eccentricity in the visual field. The upper limit of complete temporal summation (critical duration) was estimated using iterative two-phase regression analysis.\ud RESULTS: Median critical duration values were significantly longer (P < 0.05) in the OAG group for the near-GIII (107.2 ms; interquartile range [IQR], 38.0-190.5) and Ricco's area-scaled (83.2 ms, 41.7-151.4) stimuli, compared to those in healthy subjects (near-GIII, 34.7 ms; 18.2-47.9; Ricco's area-scaled, 49.0 ms; 25.1-64.6). The greatest difference in contrast thresholds between healthy and OAG subjects (i.e., disease signal) was found when stimuli were scaled to Ricco's area and shorter than or equal to the critical duration in healthy observers.\ud CONCLUSIONS: Temporal summation is altered in glaucoma. The stimulus duration and area of conventional SAP may be suboptimal for identifying early functional damage. Simultaneously modulating stimulus duration, area, and luminance during the examination may improve the diagnostic capability of SAP and expand the dynamic range of current instruments.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Tafreshi A, Sample PA, Liebmann JM, et al. Visual functionspecific perimetry to identify glaucomatous visual loss using three different definitions of visual field abnormality. Invest Ophthalmol Vis Sci. 2009;50:1234-1240.
    • 2. Henson DB, Chaudry S, Artes PH, Faragher EB, Ansons A. Response variability in the visual field: comparison of optic neuritis, glaucoma, ocular hypertension, and normal eyes. Invest Ophthalmol Vis Sci. 2000;41:417-421.
    • 3. Artes PH, Hutchison DM, Nicolela MT, LeBlanc RP, Chauhan BC. Threshold and variability properties of matrix frequencydoubling technology and standard automated perimetry in glaucoma. Invest Ophthalmol Vis Sci. 2005;46:2451-2457.
    • 4. Russell RA, Crabb DP, Malik R, Garway-Heath DF. The relationship between variability and sensitivity in large-scale longitudinal visual field data. Invest Ophthalmol Vis Sci. 2012; 53:5985-5990.
    • 5. Wall M, Woodward KR, Doyle CK, Artes PH. Repeatability of automated perimetry: a comparison between standard automated perimetry with stimulus size III and V, matrix, and motion perimetry. Invest Ophthalmol Vis Sci. 2009;50:974- 979.
    • 6. International Council of Ophthalmology. Perimetric Standards and Perimetric Glossary of the International Council of Ophthalmology. The Hague, London: Dr. W. Junk bv Publishers; 1979.
    • 7. Aulhorn E, Harms H. Visual perimetry. In: Jameson D, Hurvich L, eds. Visual Psychophysics. New York: Springer-Verlag; 1972: 102-145.
    • 8. Mulholland PJ, Redmond T, Garway-Heath DF, Zlatkova MB, Anderson RS. Estimating the critical duration for temporal summation of standard achromatic perimetric stimuli. Invest Ophthalmol Vis Sci. 2015;56:431-437.
    • 9. Anderson RS. The psychophysics of glaucoma: improving the structure/function relationship. Prog Ret Eye Res. 2006;25:79- 97.
    • 10. Ricco A. Relazione fra il minimo angolo visuale e l'intensit`a luminosa. Memorie della Regia Academia di Scienze, lettere ed arti in Modena. 1877;17:47-160.
    • 11. Barlow HB. Temporal and spatial summation in human vision at different background intensities. J Physiol. 1958;141:337- 350.
    • 12. Redmond T, Zlatkova MB, Vassilev A, Garway-Heath DF, Anderson RS. Changes in Ricco's area with background luminance in the S-cone pathway. Optom Vis Sci. 2013;90: 66-74.
    • 13. Glezer VD. The receptive fields of the retina. Vision Res. 1965; 5:497-525.
    • 14. Wilson ME. Invariant features of spatial summation with changing locus in the visual field. J Physiol. 1970;207:611- 622.
    • 15. Wilson ME. Spatial and temporal summation in impaired regions of the visual field. J Physiol. 1967;189:189-208.
    • 16. Redmond T, Garway-Heath DF, Zlatkova MB, Anderson RS. Sensitivity loss in early glaucoma can be mapped to an enlargement of the area of complete spatial summation. Invest Ophthalmol Vis Sci. 2010;51:6540-6548.
    • 17. Fellman RL, Lynn JR, Starita RJ, Swanson WH. Clinical importance of spatial summation in glaucoma. In: Heijl A, ed. Perimetry Update 1988/1989. Amsterdam/Milano: Kugler & Gedini; 1989:313-324.
    • 18. Wall M, Doyle CK, Zamba KD, Artes P, Johnson CA. The repeatability of mean defect with size III and size V standard automated perimetry. Invest Ophthalmol Vis Sci. 2013;54: 1345-1351.
    • 19. Bloch AM. Experiences sur la vision. C R Soc Biol (Paris). 1885;37:493-495.
    • 20. Johnson CA. Psychophysical factors that have been applied to clinical perimetry. Vision Res. 2013;90:25-31.
    • 21. Dannheim F, Drance SM. Psychovisual disturbances in glaucoma. A study of temporal and spatial summation. Arch Ophthalmol. 1974;91:463-468.
    • 22. Funkhouser AT, Fankhauser F. Temporal summation measurements with the Octopus 1-2-3 perimeter. Ger J Ophthalmol. 1994;3:120-128.
    • 23. Ogawa T, Furuno F, Seki A, Suzumura H, Yabuki K, Matsuo H. Temporal summation of normal eyes and impaired regions of the visual field. Nippon Ganka Gakkai Zasshi. 1984;88: 1216-1223.
    • 24. Kono M, Yamade S. Temporal integration in diseased eyes. Int Ophthalmol. 1996;20:231-239.
    • 25. Holmin C, Krakau CE. Variability of glaucomatous visual field defects in computerized perimetry. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1979;210:235-250.
    • 26. Krakau C. Temporal summation and perimetry. Ophthalmic Res. 1989;21:49-55.
    • 27. Hnik P, Chauhan BC, Drance SM, Chan A. Temporal Summation in Early Glaucoma. In: Wall M, Heijl A. Perimetry Update 1996/1997. Proceedings of the XIIth International Perimetric Society Meeting, Wurzburg, Germany, June 4-8, 1996;1996:223.
    • 28. Baumgardt E. Visual spatial and temporal summation. Nature. 1959;184:1951-1952.
    • 29. Owen W. Spatiotemporal integration in the human peripheral retina. Vision Res. 1972;12:1011-1026.
    • 30. Mulholland PJ, Redmond T, Garway-Heath DF, Zlatkova MB, Anderson RS. The effect of age on the temporal summation of achromatic perimetric stimuli. Invest Ophthalmol Vis Sci. 2015;56:6467-6472.
    • 31. Swanson WH, Felius J, Pan F. Perimetric defects and ganglion cell damage: interpreting linear relations using a two-stage neural model. Invest Ophthalmol Vis Sci. 2004;45:466-472.
    • 32. Mulholland PJ, Zlatkova MB, Redmond T, Garway-Heath DF, Anderson RS. Effect of varying CRT refresh rate on the measurement of temporal summation. Ophthal Physiol Opt. 2015;35:582-590.
    • 33. Hartline HK. A quantitative and descriptive study of the electric response to illumination of the arthropod eye. Am J Physiol. 1928;83:466-483.
    • 34. Hood DC, Grover BG. Temporal summation of light by a vertebrate visual receptor. Science. 1974;184:1003-1005.
    • 35. Hansen RM, Moskowitz A, Tavormina JL, Bush JN, Soni G, Fulton AB. Temporal summation in children with a history of retinopathy of prematurity (ROP). Invest Ophthalmol Vis Sci. 2015;56:914-917.
    • 36. Granit R, Davis W. Comparative studies on the peripheral and central retina IV: temporal summation of subliminal visual stimuli and the time course of the excitory after-effect. Am J Physiol. 1931;98:644-653.
    • 37. Baumgardt E, Hillmann B. Duration and size as determinants of peripheral retinal response. J Opt Soc Am A. 1961;51:340- 344.
    • 38. Swanson WH, Pan F, Lee BB. Chromatic temporal integration and retinal eccentricity: psychophysics, neurometric analysis and cortical pooling. Vision Res. 2008;48:2657-2662.
    • 39. Battersby W, Schuckman H. The time course of temporal summation. Vision Res. 1970;10:263-273.
    • 40. Harwerth RS, Carter-Dawson L, Shen F, Smith EL III, Crawford ML. Ganglion cell losses underlying visual field defects from experimental glaucoma. Invest Ophthalmol Vis Sci. 1999;40: 2242-2250.
    • 41. Kendell KR, Quigley HA, Kerrigan LA, Pease ME, Quigley EN. Primary open-angle glaucoma is not associated with photoreceptor loss. Invest Ophthalmol Vis Sci. 1995;36:200-205.
    • 42. Schefrin BE, Bieber ML, McLean R, Werner JS. The area of complete scotopic spatial summation enlarges with age. J Opt Soc Am A Opt Image Sci Vis. 1998;15:340-348.
    • 43. Vassilev A, Ivanov I, Zlatkova MB, Anderson RS. Human S-cone vision: relationship between perceptive field and ganglion cell dendritic field. J Vis. 2005;5:823-833.
    • 44. Porciatti V, Ventura LM. Retinal ganglion cell functional plasticity and optic neuropathy: a comprehensive model. J Neuro-Ophthalmol. 2012;32:354-358.
    • 45. Morgan JE, Datta AV, Erichsen JT, Albon J, Boulton ME. Retinal ganglion cell remodelling in experimental glaucoma. Adv Exp Med Biol. 2006;572:397-402.
    • 46. Morgan JE, Uchida H, Caprioli J. Retinal ganglion cell death in experimental glaucoma. Br J Ophthalmol. 2000;84:303-310.
    • 47. Kisiswa L, Dervan AG, Albon J, Morgan JE, Wride MA. Retinal ganglion cell death postponed: giving apoptosis a break? Ophthalmic Res. 2010;43:61-78.
    • 48. Weber AJ, Harman CD. Structure-function relations of parasol cells in the normal and glaucomatous primate retina. Invest Ophthalmol Vis Sci. 2005;46:3197-3207.
    • 49. Fortune B, Bui BV, Morrison JC, et al. Selective ganglion cell functional loss in rats with experimental glaucoma. Invest Ophthalmol Vis Sci. 2004;45:1854-1862.
    • 50. Yu L, Xie B, Yin X, et al. Reduced cortical thickness in primary open-angle glaucoma and its relationship to the retinal nerve fiber layer thickness. PLoS One. 2013;8:e73208.
    • 51. Gupta N, Ang LC, Noel de Tilly L, Bidaisee L, Yucel YH. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br J Ophthalmol. 2006;90:674-678.
    • 52. Yu¨cel YH, Zhang Q, Weinreb RN, Kaufman PL, Gupta N. Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res. 2003;22:465-481.
    • 53. Hernowo AT, Boucard CC, Jansonius NM, Hooymans JM, Cornelissen FW. Automated morphometry of the visual pathway in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2011;52:2758-2766.
    • 54. Zikou AK, Kitsos G, Tzarouchi LC, Astrakas L, Alexiou GA, Argyropoulou MI. Voxel-based morphometry and diffusion tensor imaging of the optic pathway in primary open-angle glaucoma: a preliminary study. AJNR Am J Neuroradiol. 2012; 33:128-134.
    • 55. Williams AL, Lackey J, Wizov SS, et al. Evidence for widespread structural brain changes in glaucoma: a preliminary voxelbased MRI study. Invest Ophthalmol Vis Sci. 2013;54:5880- 5887.
    • 56. Duncan RO, Sample PA, Weinreb RN, Bowd C, Zangwill LM. Retinotopic organization of primary visual cortex in glaucoma: a method for comparing cortical function with damage to the optic disk. Invest Ophthalmol Vis Sci. 2007;48:733-744.
    • 57. Kirkwood A, Lee HK, Bear MF. Co-regulation of long-term potentiation and experience-dependent synaptic plasticity in visual cortex by age and experience. Nature. 1995;375:328- 331.
    • 58. Eyding D, Schweigart G, Eysel UT. Spatiotemporal plasticity of cortical receptive fields in response to repetitive visual stimulation in the adult cat. Neuroscience. 2002;112:195-215.
    • 59. Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L. Reactivation of ocular dominance plasticity in the adult visual cortex. Science. 2002;298:1248-1251.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article