LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hill, John Grant; Platts, James Alexis
Publisher: AIP
Languages: English
Types: Article
Subjects:
Identifiers:doi:10.1063/1.2982790
The results of density fitting and local approximations applied to the calculation of transition metal–ligand binding energies using second order Møller–Plesset perturbation theory are reported. This procedure accurately reproduces counterpoise corrected binding energies from the canonical method for a range of test complexes. While counterpoise corrections for basis set superposition error are generally small, this procedure can be time consuming, and in some cases gives rise to unphysical dissociation of complexes. In circumventing this correction, a local treatment of electron correlation offers major efficiency savings with little loss of accuracy. The use of density fitting for the underlying Hartree–Fock calculations is also tested for sample Ru complexes, leading to further efficiency gains but essentially no loss in accuracy.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 O. Vahtras, J. Almlöf, and M. W. Feyereisen, Chem. Phys. Lett. 213, 514 1993 .
    • 2 C. Hättig and F. Weigend, J. Chem. Phys. 113, 5154 2000 .
    • 3 M. Schütz and F. R. Manby, Phys. Chem. Chem. Phys. 5, 3349 2003 .
    • 4 P. Pulay, Chem. Phys. Lett. 100, 151 1983 .
    • 5 S. Saebø and P. Pulay, Annu. Rev. Phys. Chem. 44, 213 1993 .
    • 6 C. Hampel and H.-J. Werner, J. Chem. Phys. 104, 6286 1996 .
    • 7 M. Schütz, G. Hetzer, and H.-J. Werner, J. Chem. Phys. 111, 5691 1999 .
    • 8 G. Hetzer, M. Schütz, H. Stoll, and H.-J. Werner, J. Chem. Phys. 113, 9443 2000 .
    • 9 M. Schütz, G. Rauhut, and H.-J. Werner, J. Phys. Chem. A 102, 5997 1998 .
    • 10 N. Runeberg, M. Schütz, and H.-J. Werner, J. Chem. Phys. 110, 7210 1999 .
    • 11 H.-J. Werner, F. R. Manby, and P. J. Knowles, J. Chem. Phys. 118, 8149 2003 .
    • 12 T. van Mourik, Chem. Phys. Lett. 414, 364 2005 .
    • 13 T. Hrenar, G. Rauhut, and H.-J. Werner, J. Phys. Chem. A 110, 2060 2006 .
    • 14 R. A. Mata and H.-J. Werner, J. Chem. Phys. 125, 184110 2006 .
    • 15 L. F. Holroyd and T. van Mourik, Chem. Phys. Lett. 442, 42 2007 .
    • 16 L. Maschio, D. Usvyat, F. R. Manby, S. Casassa, C. Pisani, and M. Schütz, Phys. Rev. B 76, 075101 2007 .
    • 17 T. van Mourik, V. I. Danilov, E. Gonzalez, A. Deriabina, and V. I. Poltev, Chem. Phys. Lett. 445, 303 2007 .
    • 18 R. A. Mata, H.-J. Werner, S. Thiel, and W. Thiel, J. Chem. Phys. 128, 025104 2008 .
    • 19 E. Goll, T. Leininger, F. R. Manby, A. Mitrushchenkov, H.-J. Werner, and H. Stoll, Phys. Chem. Chem. Phys. 10, 3353 2008 .
    • 20 J. G. Hill, J. A. Platts, and H.-J. Werner, Phys. Chem. Chem. Phys. 8, 4072 2006 .
    • 21 J. G. Hill and J. A. Platts, Phys. Chem. Chem. Phys. 10, 2785 2008 .
    • 22 T. Takatani and C. D. Sherrill, Phys. Chem. Chem. Phys. 9, 6106 2007 .
    • 23 S. Grimme, J. Chem. Phys. 118, 9095 2003 .
    • 24 J. G. Hill and J. A. Platts, J. Chem. Theory Comput. 3, 80 2007 .
    • 25 J. Antony and S. Grimme, J. Phys. Chem. A 111, 4862 2007 .
    • 26 T. H. Dunning, J. Chem. Phys. 90, 1007 1989 .
    • 27 N. B. Balabanov and K. A. Peterson, J. Chem. Phys. 123, 064107 2005 .
    • 28 F. Weigend, A. Köhn, and C. Hättig, J. Chem. Phys. 116, 3175 2002 .
    • 29 C. Hättig, Phys. Chem. Chem. Phys. 7, 59 2005 .
    • 30 J. G. Hill and J. A. Platts, J. Chem. Phys. 128, 044104 2008 .
    • 31 M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 03, Revision C.01, Gaussian, Inc., Wallingford, CT, 2004.
    • 32 K. Gkionis, J. A. Platts, and J. G. Hill, Inorg. Chem. 47, 3893 2008 .
    • 33 MOLPRO, version 2006.4, a package of ab initio programs designed by H.-J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schütz, P. Celani, T. Korana, A. Mitrushenkov, G. Rauhut, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning et al.
    • 34 M. Schütz and H.-J. Werner, Chem. Phys. Lett. 318, 370 2000 .
    • 35 M. Schütz, J. Chem. Phys. 113, 9986 2000 .
    • 36 M. Schütz and H.-J. Werner, J. Chem. Phys. 114, 661 2001 .
    • 37 M. Schütz, Phys. Chem. Chem. Phys. 4, 3941 2002 .
    • 38 S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 1970 .
    • 39 K. A. Peterson, D. Figgen, M. Dolg, and H. Stoll, J. Chem. Phys. 126, 124101 2007 .
    • 40 R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 1992 .
    • 41 J. Pipek and P. G. Mezey, J. Chem. Phys. 90, 4916 1989 .
    • 42 J. W. Boughton and P. J. Pulay, J. Comput. Chem. 14, 736 1993 .
    • 43 S. Grimme, Chem.-Eur. J. 10, 3423 2004 .
    • 44 C. Hättig, J. Chem. Phys. 118, 7751 2003 .
    • 45 R. Ahlrichs, M. Bär, M. Häser, H. Horn, and C. Kölmel, Chem. Phys. Lett. 162, 165 1989 .
    • 46 TURBOMOLE, Version 5.9.1, see http://www.cosmologic.de/ QuantumChemistry/main_turbomole.html
    • 47 See EPAPS Document No. E-JCPSA6-129-608838 for Gaussian exponents for the cc-pVnZ-PP and aug-cc-pVnZ-PP MP2-fitting auxiliary basis sets. n = D , T , Q, and 5 in both cases. Also included are tables detailing the comparison of the number of GTOs in AO and auxiliary basis sets, relative percentage errors in basis set incompletness and from the DF approximation, correlation energies for the basis set test set, and HF and MP2 contributions to the interaction energy for O2− removal from TiCl4O2−. For more information on EPAPS, see http://www.aip.org/ pubservs/epaps.html.
    • 48 O. Marchetti and H.-J. Werner, Phys. Chem. Chem. Phys. 10, 3400 2008 .
    • 49 H.-J. Werner and K. Pflüger, Annu. Rep. Comp. Chem. 2, 53 2006 .
    • 50 F. Weigend, Phys. Chem. Chem. Phys. 4, 4285 2002 .
    • 51 R. Polly, H.-J. Werner, F. R. Manby, and P. J. Knowles, Mol. Phys. 102, 2311 2004 .
    • 52 F. Weigend, J. Comput. Chem. 29, 167 2008 .
    • 53 K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, and T. L. Windus, J. Chem. Inf. Model. 47, 1045 2007 .
    • 54 EPSRC National Service for Computational Chemistry Software, see http://www.nsccs.ac.uk
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article