LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Tibber, M.S.; Anderson, E. J.; Melmoth, D.; Rees, G.; Morgan, M. J. (2009)
Publisher: PUBLIC LIBRARY SCIENCE
Journal: PLoS ONE
Languages: English
Types: Article
Subjects: Neuroscience/Experimental Psychology, Q, R, Research Article, RE, LATERAL OCCIPITAL COMPLEX, HUMAN EXTRASTRIATE CORTEX, HUMAN VISUAL-SYSTEM, OBJECT IDENTIFICATION, HUMAN BRAIN, SURFACE-ORIENTATION, PARIETAL CORTEX, NEGATIVE BOLD, ANATOMICAL LANDMARK, RECEPTIVE-FIELDS, Neuroscience/Sensory Systems, Science, Neuroscience/Natural and Synthetic Vision, Medicine, Neuroscience/Psychology, Neuroscience/Motor Systems
There is a wealth of literature on the role of short-range interactions between low-level orientation-tuned filters in the perception of discontinuous contours. However, little is known about how spatial information is integrated across more distant regions of the visual field in the absence of explicit local orientation cues, a process referred to here as visuospatial interpolation (VSI). To examine the neural correlates of VSI high field functional magnetic resonance imaging was used to study brain activity while observers either judged the alignment of three Gabor patches by a process of interpolation or discriminated the local orientation of the individual patches. Relative to a fixation baseline the two tasks activated a largely over-lapping network of regions within the occipito-temporal, occipito-parietal and frontal cortices. Activated clusters specific to the orientation task (orientation. interpolation) included the caudal intraparietal sulcus, an area whose role in orientation encoding per se has been hotly disputed. Surprisingly, there were few task-specific activations associated with visuospatial interpolation (VSI. orientation) suggesting that largely common cortical loci were activated by the two experimental tasks. These data are consistent with previous studies that suggest higher level grouping processes-putatively involved in VSI-are automatically engaged when the spatial properties of a stimulus (e. g. size, orientation or relative position) are used to make a judgement.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195(1): 215-243.
    • 2. Ringach DL (2004) Mapping receptive fields in primary visual cortex. J Physiol 558(Pt 3): 717-728.
    • 3. Marr D (1982) Vision. A computational investigation into the human representation and processing of visual information. Freeman WHC.
    • 4. Field DJ, Hayes A, Hess RF (1993) Contour integration by the human visual system: evidence for a local ''association field''. Vision Res 33(2): 173-193.
    • 5. Hess RF, Dakin SC (1997) Absence of contour linking in peripheral vision. Nature 390(6660): 602-604.
    • 6. Field D, Hayes A (2001) Contour Integration and the Lateral Connections of V1 Neurons. In: Chalupa LM, JS Wener JS, eds. The Visual Neurosciences MIT Press. pp 1069-1079.
    • 7. Hess R, Field D (1999) Integration of contours: new insights. Trends Cogn Sci 3(12): 480-486.
    • 8. Watt RJ (1984) Towards a general theory of the visual acuities for shape and spatial arrangement. Vision Res 24(10): 1377-1386.
    • 9. Morgan MJ, Ward RM, Hole GJ (1990) Evidence for positional coding in hyperacuity. J Opt Soc Am A 7(2): 297-304.
    • 10. Toet A, Koenderink JJ (1988) Differential spatial displacement discrimination thresholds for Gabor patches. Vision Res 28(1): 133-143.
    • 11. Kooi FL, De Valois RL, Switkes E (1991) Spatial localization across channels. Vision Res 31(9): 1627-1631.
    • 12. Morgan MJ (1990) Hyperacuity. In: Regan D, ed. Spatial Vision. London: Macmillan Press.
    • 13. Levi DM, Waugh SJ (1996) Position acuity with opposite-contrast polarity features: evidence for a nonlinear collector mechanism for position acuity? Vision Res 36(4): 573-588.
    • 14. Burbeck CA (1987) Position and spatial frequency in large-scale localization judgments. Vision Res 27(3): 417-427.
    • 15. Morgan MJ, Regan D (1987) Opponent model for line interval discrimination: interval and vernier performance compared. Vision Res 27(1): 107-118.
    • 16. Waugh SJ, Levi DM (1995) Spatial alignment across gaps: contributions of orientation and spatial scale. J Opt Soc Am A Opt Image Sci Vis 12(10): 2305-2317.
    • 17. Haxby JV, Grady CL, Horwitz B, Ungerleider LG, Mishkin M, et al. (1991) Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proc Natl Acad Sci U S A 88(5): 1621-1625.
    • 18. Corbetta M, Miezin FM, Shulman GL, Petersen SE (1993) A PET study of visuospatial attention. J Neurosci 13(3): 1202-1226.
    • 19. Faillenot I, Toni I, Decety J, Gregoire MC, Jeannerod M (1997) Visual pathways for object-oriented action and object recognition: functional anatomy with PET. Cereb Cortex 7(1): 77-85.
    • 20. Faillenot I, Decety J, Jeannerod M (1999) Human brain activity related to the perception of spatial features of objects. Neuroimage 10(2): 114-124.
    • 21. Pourtois G, Vandermeeren Y, Olivier E, de Gelder B (2001) Event-related TMS over the right posterior parietal cortex induces ipsilateral visuo-spatial interference. Neuroreport 12(11): 2369-2374.
    • 22. Shafritz KM, Gore JC, Marois R (2002) The role of the parietal cortex in visual feature binding. Proc Natl Acad Sci U S A 99(16): 10917-10922.
    • 23. Altmann CF, Bulthoff HH, Kourtzi Z (2003) Perceptual organization of local elements into global shapes in the human visual cortex. Curr Biol 13(4): 342-349.
    • 24. Kourtzi Z, Tolias AS, Altmann CF, Augath M, Logothetis NK (2003) Integration of local features into global shapes: monkey and human FMRI studies. Neuron 37(2): 333-346.
    • 25. Ostwald D, Lam JM, Li S, Kourtzi Z (2008) Neural coding of global form in the human visual cortex. J Neurophysiol 99(5): 2456-2469.
    • 26. Grill-Spector K, Kushnir T, Edelman S, Itzchak Y, Malach R (1998) Cueinvariant activation in object-related areas of the human occipital lobe. Neuron 21(1): 191-202.
    • 27. Mendola JD, Dale AM, Fischl B, Liu AK, Tootell RB (1999) The representation of illusory and real contours in human cortical visual areas revealed by functional magnetic resonance imaging. J Neurosci 19(19): 8560-8572.
    • 28. Murray MM, Wylie GR, Higgins BA, Javitt DC, Schroeder CE, et al. (2002) The spatiotemporal dynamics of illusory contour processing: combined highdensity electrical mapping, source analysis, and functional magnetic resonance imaging. J Neurosci 22(12): 5055-5073.
    • 29. Stanley DA, Rubin N (2003) fMRI activation in response to illusory contours and salient regions in the human lateral occipital complex. Neuron 37(2): 323-331.
    • 30. Hess RF, Hayes A (1994) The coding of spatial position by the human visual system: effects of spatial scale and retinal eccentricity. Vision Res 34(5): 625-643.
    • 31. Dupont P, Vogels R, Vandenberghe R, Rosier A, Cornette L, et al. (1998) Regions in the human brain activated by simultaneous orientation discrimination: a study with positron emission tomography. Eur J Neurosci 10(12): 3689-3699.
    • 32. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain: 3-Dimensional Proportional System - an approach to cerebral imaging. New York: Thieme Medical Publishers.
    • 33. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, et al. (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98(2): 676-682.
    • 34. Laurienti PJ (2004) Deactivations, global signal, and the default mode of brain function. J Cogn Neurosci 16(9): 1481-1483.
    • 35. Raichle ME, Snyder AZ (2007) A default mode of brain function: A brief history of an evolving idea. Neuroimage 37(4): 1083-1090.
    • 36. Grill-Spector K, Kourtzi Z, Kanwisher N (2001) The lateral occipital complex and its role in object recognition. Vision Res 41(10-11): 1409-1422.
    • 37. Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, et al. (1999) Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24(1): 187-203.
    • 38. Dumoulin SO, Bittar RG, Kabani NJ, Baker CL Jr, Le Goualher G, et al. (2000) A new anatomical landmark for reliable identification of human area V5/MT: a quantitative analysis of sulcal patterning. Cereb Cortex 10(5): 454-463.
    • 39. Paus T (1996) Location and function of the human frontal eye-field: a selective review. Neuropsychologia 34(6): 475-483.
    • 40. Mort DJ, Perry RJ, Mannan SK, Hodgson TL, Anderson E, et al. (2003) Differential cortical activation during voluntary and reflexive saccades in man. Neuroimage 18(2): 231-246.
    • 41. Grosbras MH, Lobel E, Van de Moortele PF, LeBihan D, Berthoz A (1999) An anatomical landmark for the supplementary eye fields in human revealed with functional magnetic resonance imaging. Cereb Cortex 9(7): 705-711.
    • 42. Shmuel A, Yacoub E, Pfeuffer J, Van de Moortele PF, Adriany G, et al. (2002) Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron 36(6): 1195-1210.
    • 43. Wade AR (2002) The negative BOLD signal unmasked. Neuron 36(6): 993-995.
    • 44. Amedi A, Malach R, Pascual-Leone A (2005) Negative BOLD differentiates visual imagery and perception. Neuron 48(5): 859-872.
    • 45. Laurienti PJ, Burdette JH, Wallace MT, Yen YF, Field AS, et al. (2002) Deactivation of sensory-specific cortex by cross-modal stimuli. J Cogn Neurosci 14(3): 420-429.
    • 46. Tomasi D, Ernst T, Caparelli EC, Chang L (2006) Common deactivation patterns during working memory and visual attention tasks: an intra-subject fMRI study at 4 Tesla. Hum Brain Mapp 27(8): 694-705.
    • 47. Haxby JV, Horwitz B, Ungerleider LG, Maisog JM, Pietrini P, et al. (1994) The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations. J Neurosci 14(11 Pt 1): 6336-6353.
    • 48. James TW, Humphrey GK, Gati JS, Menon RS, Goodale MA (2002) Differential effects of viewpoint on object-driven activation in dorsal and ventral streams. Neuron 35(4): 793-801.
    • 49. Shikata E, Hamzei F, Glauche V, Knab R, Dettmers C, et al. (2001) Surface orientation discrimination activates caudal and anterior intraparietal sulcus in humans: an event-related fMRI study. J Neurophysiol 85(3): 1309-1314.
    • 50. Faillenot I, Sunaert S, Van Hecke P, Orban GA (2001) Orientation discrimination of objects and gratings compared: an fMRI study. Eur J Neurosci 13(3): 585-596.
    • 51. Vandenberghe R, Dupont P, De Bruyn B, Bormans G, Michiels J, et al. (1996) The influence of stimulus location on the brain activation pattern in detection and orientation discrimination. A PET study of visual attention. Brain 119 (Pt 4): 1263-1276.
    • 52. Kitada R, Kito T, Saito DN, Kochiyama T, Matsumura M, et al. (2006) Multisensory activation of the intraparietal area when classifying grating orientation: a functional magnetic resonance imaging study. J Neurosci 26(28): 7491-7501.
    • 53. Pins D, Meyer ME, Foucher J, Humphreys G, Boucart M (2004) Neural correlates of implicit object identification. Neuropsychologia 42(9): 1247-1259.
    • 54. Orban GA, Dupont P, Vogels R, Bormans G, Mortelmans L (1997) Human brain activity related to orientation discrimination tasks. Eur J Neurosci 9(2): 246-259.
    • 55. Navon D (1977) Forest Before Trees: The Precedence of Global Features in Visual Perception Cognitive Psychology 9: 353-383.
    • 56. Fink GR, Halligan PW, Marshall JC, Frith CD, Frackowiak RS, et al. (1996) Where in the brain does visual attention select the forest and the trees? Nature 382(6592): 626-628.
    • 57. Taira M, Tsutsui KI, Jiang M, Yara K, Sakata H (2000) Parietal neurons represent surface orientation from the gradient of binocular disparity. J Neurophysiol 83(5): 3140-3146.
    • 58. Tsutsui K, Jiang M, Yara K, Sakata H, Taira M (2001) Integration of perspective and disparity cues in surface-orientation-selective neurons of area CIP. J Neurophysiol 86(6): 2856-2867.
    • 59. Tsao DY, Vanduffel W, Sasaki Y, Fize D, Knutsen TA, et al. (2003) Stereopsis activates V3A and caudal intraparietal areas in macaques and humans. Neuron 39(3): 555-568.
    • 60. Sakata H, Taira M, Kusunoki M, Murata A, Tanaka Y (1997) The TINS Lecture. The parietal association cortex in depth perception and visual control of hand action. Trends Neurosci 20(8): 350-357.
    • 61. Harris IM, Egan GF, Sonkkila C, Tochon-Danguy HJ, Paxinos G, et al. (2000) Selective right parietal lobe activation during mental rotation: a parametric PET study. Brain 123 (Pt 1): 65-73.
    • 62. Harris IM, Miniussi C (2003) Parietal lobe contribution to mental rotation demonstrated with rTMS. J Cogn Neurosci 15(3): 315-323.
    • 63. Cant JS, Valyear KF, Goodale MA (2004) 'Stuff' versus 'things': Neural processing of the material properties and geometric form of objects in human visual pathways. Journal of Vision 4(8): 510-510.
    • 64. Rice NJ, Valyear KF, Goodale MA, Milner AD, Culham JC (2007) Orientation sensitivity to graspable objects: an fMRI adaptation study. Neuroimage 36 Suppl 2: T87-93.
    • 65. Harris IM, Benito CT, Ruzzoli M, Miniussi C (2008) Effects of right parietal transcranial magnetic stimulation on object identification and orientation judgments. J Cogn Neurosci 20(5): 916-926.
    • 66. Goodale MA, Milner AD, Jakobson LS, Carey DP (1991) A neurological dissociation between perceiving objects and grasping them. Nature 349(6305): 154-156.
    • 67. Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15(1): 20-25.
    • 68. Goodale MA, Westwood DA (2004) An evolving view of duplex vision: separate but interacting cortical pathways for perception and action. Curr Opin Neurobiol 14(2): 203-211.
    • 69. Valyear KF, Culham JC, Sharif N, Westwood D, Goodale MA (2006) A double dissociation between sensitivity to changes in object identity and object orientation in the ventral and dorsal visual streams: a human fMRI study. Neuropsychologia 44(2): 218-228.
    • 70. Aso T, Hanakawa T, Matsuo K, Toma K, Shibasaki H, et al. (2007) Subregions of human parietal cortex selectively encoding object orientation. Neurosci Lett 415(3): 225-230.
    • 71. Altmann CF, Grodd W, Kourtzi Z, Bulthoff HH, Karnath HO (2005) Similar cortical correlates underlie visual object identification and orientation judgment. Neuropsychologia 43(14): 2101-2108.
    • 72. Kellman PJ, Guttman SE, Wickens TD (2001) Models of Segmentation and Grouping. In: Kellman TFSaPJ, ed. From Fragments to Objects: Segmentation and Grouping in Vision. Amsterdam: Elsevier. pp 181-246.
    • 73. Wertheimer M (1938) Laws of Organization in Perceptual Forms. First published as Untersuchungen zur Lehre von der Gestalt II, in Psycologische Forschung, 4, 301-350. In: Ellis W, ed. A source book of Gestalt psychology. London: Routledge & Kegan Paul. pp 71-88.
    • 74. Boucart M, Humphreys GW (1992) Global shape cannot be attended without object identification. J Exp Psychol Hum Percept Perform 18(3): 785-806.
    • 75. Boucart M, Humphreys GW (1994) Attention to orientation, size, luminance, and color: attentional failure within the form domain. J Exp Psychol Hum Percept Perform 20(1): 61-80.
    • 76. Boucart M, Humphreys GW, Lorenceau J (1995) Automatic access to object identity: attention to global information, not to particular physical dimensions, is important. J Exp Psychol Hum Percept Perform 21(3): 584-601.
    • 77. Boucart M, Humphreys GW (1997) Integration of physical and semantic information in object processing. Perception 26(9): 1197-1209.
    • 78. Humphreys GW, Boucart M (1997) Selection by color and form in vision. J Exp Psychol Hum Percept Perform 23(1): 136-153.
    • 79. Boucart M, Meyer ME, Pins D, Humphreys GW, Scheiber C, et al. (2000) Automatic object identification: an fMRI study. Neuroreport 11(11): 2379-2383.
    • 80. Pins D, Boucart M, Meyer ME, Jack F (2001) Automatic object identification in a perceptual matching paradigm: An fMRI study. Journal of Vision 1(3): Abstract 95, 95a.
    • 81. Kourtzi Z, Grill-Spector K (2005) fMRI adaptation: a tool for studying visual representations in the primate brain. In: Clifford GRC, ed. Fitting the Mind into the World. Oxford: Oxford University Press.
    • 82. Paus T (2005) Inferring causality in brain images: a perturbation approach. Philos Trans R Soc Lond B Biol Sci 360(1457): 1109-1114.
    • 83. Brainard DH (1997) The Psychophysics Toolbox. Spat Vis 10(4): 433-436.
    • 84. Friston KJ, Holmes AP, Price CJ, Buchel C, Worsley KJ (1999) Multisubject fMRI studies and conjunction analyses. Neuroimage 10(4): 385-396.
    • 85. Friston KJ, Holmes AP, Worsley KJ (1999) How many subjects constitute a study? Neuroimage 10(1): 1-5.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    73
    73%
    73
    73%
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article