LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lisofsky, N.; Wiener, J.M.; de Condappa, Olivier; Gallinat, J.; Lindenberger, U.; Kühn, S. (2016)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: Estrogen, Striatum, sMRI, Pregnancy, Spatial learning strategies
The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link. Pregnancy is accompanied by prolonged exposure to high estrogen levels. Animal studies have shown that estrogen influences navigation strategies and, hence, affects navigation performance. High estrogen levels are related to increased use of hippocampal-based allocentric strategies and decreased use of striatal-based egocentric strategies. In humans, associations between hormonal shifts and navigation strategies are less well studied. This study compared 30 peripartal women (mean age 28 years) to an age-matched control group on allocentric versus egocentric navigation performance (measured in the last month of pregnancy) and gray matter volume (measured within two months after delivery). None of the women had a previous pregnancy before study participation. Relative to controls, pregnant women performed less well in the egocentric condition of the navigation task, but not the allocentric condition. A whole-brain group comparison revealed smaller left striatal volume (putamen) in the peripartal women. Across the two groups, left striatal volume was associated with superior egocentric over allocentric performance. Limited by the cross-sectional study design, the findings are a first indication that human pregnancy might be accompanied by structural brain changes in navigation-related neural systems and concomitant changes in navigation strategy.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bohbot, V. D., Lerch, J., Thorndycraft, B., Iaria, G., & Zijdenbos, A. P. (2007). Gray matter differences correlate with spontaneous strategies in a human virtual navigation task. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 27(38), 10078-83. doi:10.1523/JNEUROSCI.1763-07.2007
    • Cox, J. L., & Sagovsky, J. M. H. R. (1987). Detection of Postnatal Depression Development of the 10- item Edinburgh Postnatal Depression Scale, 782-787.
    • Daniel, J. M., & Lee, C. D. (2004). Estrogen replacement in ovariectomized rats affects strategy selection in the Morris water maze. Neurobiology of Learning and Memory, 82(2), 142-9. doi:10.1016/j.nlm.2004.06.001
    • Darnaudéry, M., Perez-Martin, M., Del Favero, F., Gomez-Roldan, C., Garcia-Segura, L. M., & Maccari, S. (2007). Early motherhood in rats is associated with a modification of hippocampal function. Psychoneuroendocrinology, 32(7), 803-12. doi:10.1016/j.psyneuen.2007.05.012
    • Devan, B. D., Goad, E. H., & Petri, H. L. (1996). Dissociation of hippocampal and striatal contributions to spatial navigation in the water maze. Neurobiology of Learning and Memory, 66(3), 305-23. doi:10.1006/nlme.1996.0072
    • DeVoogd, T., & Nottebohm, F. (1981). Gonadal hormones induce dendritic growth in the adult avian brain. Science (New York, N.Y.), 214(4517), 202-4. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7280692
    • Fader, A. J., Hendricson, A. W., & Dohanich, G. P. (1998). Estrogen improves performance of reinforced T-maze alternation and prevents the amnestic effects of scopolamine administered systemically or intrahippocampally. Neurobiology of Learning and Memory, 69(3), 225-40. doi:10.1006/nlme.1998.3820
    • Galea, L. A. M., Wide, J. K., Paine, T. A., Holmes, M. M., Ormerod, B. K., & Floresco, S. B. (2001). High levels of estradiol disrupt conditioned place preference learning , stimulus response learning and reference memory but have limited effects on working memory, 126, 115-126.
    • Galea, L. A., Ormerod, B. K., Sampath, S., Kostaras, X., Wilkie, D. M., & Phelps, M. T. (2000). Spatial working memory and hippocampal size across pregnancy in rats. Hormones and Behavior, 37(1), 86-95. doi:10.1006/hbeh.1999.1560
    • Galea, L., & Kavaliers, M. (1995). Gonadal hormone levels and spatial learning performance in the Morris water maze in male and female meadow voles, Microtus pennsylvanicus. Hormones and …, 29, 106-125. Retrieved from http://www.sciencedirect.com/science/article/pii/S0018506X85710082
    • Gibbs, R. B. (2000). Long-term treatment with estrogen and progesterone enhances acquisition of a spatial memory task by ovariectomized aged rats. Neurobiology of Aging, 21(1), 107-16. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10794855
    • Gramann, K., Müller, H. J., Eick, E.-M., & Schönebeck, B. (2005). Evidence of separable spatial representations in a virtual navigation task. Journal of Experimental Psychology. Human Perception and Performance, 31(6), 1199-223. doi:10.1037/0096-1523.31.6.1199
    • Guilford, J. P., Zimmerman, W. S. (1948). The Guilford-Zimmerman Aptitude Survey. Journal of Applied Psychology, 32(1), 24-34.
    • Hartesveldt, C. Van, & Joyce, J. (1986). Effects of estrogen on the basal ganglia. Neuroscience & Biobehavioral Reviews, 10, 1-14. Retrieved from http://www.sciencedirect.com/science/article/pii/0149763486900291
    • Hartley, T., Maguire, E. A., Spiers, H. J., & Burgess, N. (2003). The Well-Worn Route and the Path Less Traveled : Distinct Neural Bases of Route Following and Wayfinding in Humans, 37, 877-888.
    • Henry, J. D., & Rendell, P. G. (2007). A review of the impact of pregnancy on memory function. Journal of Clinical and Experimental Neuropsychology, 29(8), 793-803. doi:10.1080/13803390701612209
    • Hillerer, K. M., Jacobs, V. R., Fischer, T., & Aigner, L. (2014). The maternal brain: an organ with peripartal plasticity. Neural Plasticity, 2014, 574159. doi:10.1155/2014/574159
    • Iaria, G., Petrides, M., Dagher, A., Pike, B., & Bohbot, V. D. (2003). Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 23(13), 5945-52. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12843299
    • Keefe, J. O., Burgess, N., Donnett, J. G., Je, K. J., & Maguire, E. A. (1998). Place cells , navigational accuracy , and the human hippocampus. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 353, 1333-1340.
    • Kesner, R., Farnsworth, G., & DiMattia, B. (1989). Double dissociation of egocentric and allocentric space following medial prefrontal and parietal cortex lesions in the rat. Behavioral Neuroscience, 103(5), 956-961. Retrieved from http://psycnet.apa.org/journals/bne/103/5/956/
    • Korol, D. L. (2004). Role of estrogen in balancing contributions from multiple memory systems. Neurobiology of Learning and Memory, 82(3), 309-23. doi:10.1016/j.nlm.2004.07.006
    • Korol, D. L., & Kolo, L. L. (2002). Estrogen-induced changes in place and response learning in young adult female rats. Behavioral Neuroscience, 116(3), 411-420. doi:10.1037//0735- 7044.116.3.411
    • Küppers, E., & Beyer, C. (1999). Expression of estrogen receptor- a and b mRNA in the developing and adult mouse striatum. Neuroscience Letters, 276, 95-98.
    • Luine, V. N., & Frankfurt, M. (2012). Estrogens facilitate memory processing through membrane mediated mechanisms and alterations in spine density. Frontiers in Neuroendocrinology, 33(4), 388-402. doi:10.1016/j.yfrne.2012.07.004
    • McDonald, R. J., & White, N. M. (1994). Parallel information processing in the water maze: evidence for independent memory systems involving dorsal striatum and hippocampus. Behavioral and Neural Biology, 61(3), 260-70. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8067981
    • McEwen, B. (2002). Estrogen actions throughout the brain. Recent Progress in Hormone Research, 57, 357-84. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12017552
    • Oatridge, A., & Holdcroft, A. (2002). Change in brain size during and after pregnancy: study in healthy women and women with preeclampsia. American Journal …, (January), 19-26. Retrieved from http://www.ajnr.org/content/23/1/19.short
    • Packard, M. G. (2009). Exhumed from thought: basal ganglia and response learning in the plus-maze. Behavioural Brain Research, 199(1), 24-31. doi:10.1016/j.bbr.2008.12.013
    • Packard, M. G., White, M., & Ha, Q. (1978). Differential Effects of Fornix and Caudate Radial Maze Tasks : Evidence for Multiple Nucleus Lesions on Two Memory Systems, (May 1969), 1465- 1472.
    • Pawluski, J. L., Brummelte, S., Barha, C. K., Crozier, T. M., & Galea, L. A. M. (2009). Effects of steroid hormones on neurogenesis in the hippocampus of the adult female rodent during the estrous cycle, pregnancy, lactation and aging. Frontiers in Neuroendocrinology, 30(3), 343-57. doi:10.1016/j.yfrne.2009.03.007
    • Pawluski, J. L., Vanderbyl, B. L., Ragan, K., & Galea, L. a M. (2006). First reproductive experience persistently affects spatial reference and working memory in the mother and these effects are not due to pregnancy or “mothering” alone. Behavioural Brain Research, 175(1), 157-65. doi:10.1016/j.bbr.2006.08.017
    • Protopopescu, X., Butler, T., Pan, H., Root, J., Altemus, M., Polanecsky, M., … Stern, E. (2008). Hippocampal structural changes across the menstrual cycle. Hippocampus, 18(10), 985-8. doi:10.1002/hipo.20468
    • Restle, F. (1957). Discrimination of cues in mazes: A resolution of the place vs. response controversy, 64(4).
    • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., … Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273-89. doi:10.1006/nimg.2001.0978
    • Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47(2), 599-604. doi:10.2466/pms.1978.47.2.599
    • Voermans, N. C., Petersson, K. M., Daudey, L., Weber, B., Spaendonck, K. P. Van, & Kremer, H. P. H. (2004). Interaction between the Human Hippocampus and the Caudate Nucleus during Route Recognition, 43, 427-435.
    • Waller, D., & Lippa, Y. (2007). Landmarks as beacons and associative cues: their role in route learning. Memory & Cognition, 35(5), 910-924. Retrieved from http://link.springer.com/article/10.3758/BF03193465
    • Wiener, J. M., de Condappa, O., Harris, M. a, & Wolbers, T. (2013). Maladaptive bias for extrahippocampal navigation strategies in aging humans. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 33(14), 6012-7. doi:10.1523/JNEUROSCI.0717- 12.2013
    • Wolbers, T., & Hegarty, M. (2010). What determines our navigational abilities? Trends in Cognitive Sciences, 14(3), 138-46. doi:10.1016/j.tics.2010.01.001
    • Woolley, C. S. (1998). Estrogen-mediated structural and functional synaptic plasticity in the female rat hippocampus. Hormones and Behavior, 34(2), 140-8. doi:10.1006/hbeh.1998.1466
    • Woolley, C. S., & McEwen, B. S. (1993). Roles of estradiol and progesterone in regulation of hippocampal dendritic spine density during the estrous cycle in the rat. The Journal of Comparative Neurology, 336(2), 293-306. doi:10.1002/cne.903360210
    • Zurkovsky, L., Brown, S. L., Boyd, S. E., Fell, J. a, & Korol, D. L. (2007). Estrogen modulates learning in female rats by acting directly at distinct memory systems. Neuroscience, 144(1), 26-37. doi:10.1016/j.neuroscience.2006.09.002
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article