Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Edwards, J.; Krishnan, S.; Witton, C.J.; Bartlett, J.M.S. (2003)
Publisher: American Association for Cancer Research
Languages: English
Types: Article
Subjects: RC0254, RB
Purpose: Hormone resistance remains a significant clinical problem in prostate cancer with few therapeutic options. Research into mechanisms of hormone resistance is essential. \ud Experimental Design: We analyzed 38 paired (prehormone/posthormone resistance) prostate cancer samples using the Vysis GenoSensor. Archival microdissected tumor DNA was extracted, amplified, labeled, and hybridized to Amplione I DNA microarrays containing 57 oncogenes.\ud Results: Genetic instability increased during progression from hormone-sensitive to hormone-resistant cancer (P = 0.008). Amplification frequencies of 15 genes (TERC, MYBL3, HRAS, PI3KCA, JUNB, LAMC2, RAF1, MYC, GARP, SAS, FGFR1, PGY1, MYCL1, MYB, FGR) increased by greater than 10% during hormone escape. Receptor tyrosine kinases were amplified in 73% of cases; this was unrelated to development of hormone resistance. However, downstream receptor tyrosine kinase signaling pathways showed increased amplification rates in resistant tumors for the mitogen-activated protein kinase (FGR/Src-2, HRAS, and RAF1; P = 0.005) and phosphatidylinositol 3'-kinase pathways (FGR/ Src-2, PI3K, and Akt; P = 0.046). Transcription factors regulated by these pathways were also more frequently amplified after escape (MYC family: 21% before versus 63% after, P = 0.027; MYB family: 26 % before versus 53 % after, P = 0.18).\ud Conclusions: Development of clinical hormone escape is linked to phosphatidylinositol 3'-kinase and mitogen-activated protein kinase pathways. These pathways may function independently of the androgen receptor or via androgen receptor activation by phosphorylation, providing novel therapeutic targets.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Sciarra, A., Casale, P., Colella, D., Di Chiro, C., and Di Silverio, F. Hormone-refractory prostate cancer? Anti-androgen withdrawal and intermittent hormone therapy. Scand. J. Urol. Nephrol, 33: 211-216, 1999.
    • 2. Dorkin, T. J., and Neal, D. E. Basic science aspects of prostate cancer. Semin. Cancer Biol., 8: 21-27, 1997.
    • 3. Culig, Z., Hobisch, A., Bartsch, G., and Klocker, H. Expression and function of androgen receptor in carcinoma of the prostate. Microsc. Res. Tech., 51: 447- 455, 2000.
    • 4. Chang, C., Saltzman, A., Yeh, S., Young, W., Keller, E., Lee, H. J., Wang, C., and Mizokami, A. Androgen receptor: an overview. Crit. Rev. Eukaryot. Gene Expr., 5: 97-125, 1995.
    • 5. Visakorpi, T., Hyytinen, E., Koivisto, P., Tanner, M., Keinanern, R., Palmberg, C., Palotie, A., Tammela, T., Isola, J., and Kallioniemi, O. P. In vivo amplificaiton of the androgen receptor gene and progression of human prostate cancer. Nat. Genet., 9: 401- 406, 1995.
    • 6. Linja, M. J., Savinainen, K. J., Saramaki, O. R., Tammela, T. L. J., Vessella, R. L., and Visakorpi, T. Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res., 61: 3550 -3555, 2001.
    • 7. Miyoshi, Y., Uemura, H., Fujinami, K., Mikata, K., Harada, M., Kitamura, H., Koizumi, Y., and Kubota, Y. Fluorescence in situ Hybridization evaluation of c-myc and androgen receptor gene amplification and chromosomal anomalies in prostate cancer in Japanese patients. Prostate., 43: 225-232, 2000.
    • 8. Edwards, J., Krishna, N. S., Mukherjee, R., Watters, A. D., and Bartlett, J. M. S. Amplification of the androgen receptor may not explain the development of androgen-independent prostate cancer. Br. J. Urol. Int., 88: 633- 637, 2001.
    • 9. Trapman, J., and Cleutjens, K. B. J. M. Androgen-regulated gene expression in prostate cancer. Semin. Cancer Biol., 8: 29 -36, 1997.
    • 10. Wang, L. G., Liu, X. M., Kreis, W., and Budman, D. R. Phosphorylation/dephosphorylation of androgen receptor as a determinant of androgen agonistic or antagonistic activity. Biochem. Biophys. Res. Commun., 259: 21-28, 1999.
    • 11. Blok, L. J., de Ruiter, P. E., and Brinkmann, A. O. Forskolininduced dephosphorylation of the androgen receptor impairs ligand binding. Biochemistry, 37: 3850 -3857, 1998.
    • 12. Zhou, Z. X., Kemppainen, J. A., and Wilson, E. M. Identification of three proline-directed phosphorylation sites in the human androgen receptor. Mol. Endocrinol., 9: 605- 615, 1995.
    • 13. Blok, L. J., de Ruiter, P. E., and Brinkmann, A. O. Androgen receptor phosphorylation. Endocr. Res., 22: 197-219, 1996.
    • 14. Lin, H. K., Yeh, S., Kang, H. Y., and Chang, C. Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc. Natl. Acad. Sci. USA, 98: 7200 -7205, 2001.
    • 15. Wen, Y., Hu, M. C., Makino, K., Spohn, B., Bartholomeusz, G., Yan, D. H., and Hung, M. C. HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway. Cancer Res., 60: 6841- 6845, 2000.
    • 16. Ye, D., Mendelsohn, J., and Fan, Z. Androgen and epidermal growth factor down-regulate cyclin-dependent kinase inhibitor p27Kip1 and costimulate proliferation of MDA PCa 2a and MDA PCa 2b. Clin. Cancer Res., 5: 2171-2177, 1999.
    • 17. Zhu, X., and Liu, J. P. Steroid-independent activation of androgen receptor in androgen-independent prostate cancer: a possible role for the MAP kinase signal transduction pathway? Mol. Cell. Endocrinol., 134: 9 -14, 1997.
    • 18. Sciavolino, P. J., and Abate-Shen, C. Molecular biology of prostate development and prostate cancer. Ann. Med., 30: 357-368, 1998.
    • 19. Suzuki, H., and Ito, H. Role of androgen receptor in prostate cancer. Asian J. Androl., 1: 81- 85, 1999.
    • 20. Going, J. J., and Lamb, R. F. Practical histological microdissectin for PCR analysis. J. Pathol., 79: 121-124, 1996.
    • 21. Speicher, N. R., Dumanoir, S., Schrock, E., Holtgrevebrex, H., Schoell, B., Lengauer, C., Cremer, T., and Reid, T. Molecular cytogenetic analysis of formalin fixed paraffin embedded solid tumor altered universal DNA amplification by comparative genomic hybridization. Hum. Mol. Genet., 2: 1907-1914.
    • 22. El Gedaily, A., Bubendorf, L., Willi, N., Fu, W., Richter, J., Moch, H., Mihatsch, M. J., Sauter, G., and Gasser, T. C. Discovery of new DNA amplification loci in prostate cancer by comparative genomic hybridization. Prostate, 46: 184 -190, 2001.
    • 23. Kim, S. H., Kim, M. S., and Jensen, R. H. Genetic alterations in microdissected prostate cancer cells by comparative genomic hybridization. Prostate Cancer Prostatic Dis., 3: 110 -114, 2000.
    • 24. Chu, L. W., Pettaway, C. A., and Liang, J. C. Genetic abnormalities specifically associated with varying metastatic potential of prostate cancer cell lines as detected by comparative genomic hybridization. Cancer Genet. Cytogenet., 127: 161-167, 2001.
    • 25. Sattler, H. P., Lensch, R., Rohde, V., Zimmer, E., Meese, E., Bonkhoff, H., Retz, M., Zwergel, T., Bex, A., Stoeckle, M., and Wullich, B. Novel amplification unit at chromosome 3q25- q27 in human prostate cancer. Prostate, 45: 207-215, 2000.
    • 26. Sattler, H. P., Rohde, V., Bonkhoff, H., Zwergel, T., and Wullich, B. Comparative genomic hybridization reveals DNA copy number gains to frequently occur in human prostate cancer. Prostate, 39: 79 - 86, 1999.
    • 27. Rokman, A., Koivisto, P. A., Matikainen, M. P., Kuukasjarvi, T., Poutiainen, M., Helin, H. J., Karhu, R., Kallioniemi, O. P., and Schleutker, J. Genetic changes in familial prostate cancer by comparative genomic hybridization. Prostate, 46: 233-239, 2001.
    • 28. Nupponen, N. N., and Visakorpi, T. Molecular cytogenetics of prostate cancer. Microsc. Res. Tech., 51: 456 - 463, 2000.
    • 29. Skacel, M., Ormsby, A. H., Pettay, J. D., Tsiftsakis, E. K., Liou, L. S., Klein, E. A., Levin, H. S., Zippe, C. D., and Tubbs, R. R. Aneusomy of chromosomes 7, 8 and 17 and amplification of HER2 and epidermal growth factor receptor in Gleason score 7 prostate carcinoma: a differential fluorescent in situ hybridization study of Gleason pattern 4 and 4 using tissue microarray. Hum. Pathol., 32: 1392-1397, 2001.
    • 30. Olapade-Olaopa, E. O., Moscatello, D. K., MacKay, E. H., Horsburgh, T., Sandhu, D. P., Terry, T. R., Wong, A. J., and Habib, F. K. Evidence for the differential expression of a variant EGF receptor protein in human prostate cancer. Br. J. Cancer, 82: 186 -194, 2000.
    • 31. Olapade-Olaopa, E. O. The expression of a mutant epidermal growth factor receptor in prostatic tumours. Br. J. Urol. Int., 87: 224 - 226, 2001.
    • 32. Mark, H. F. L., Feldman, D., Das, S., Key, H., Mark, S., Sun, D-L., and Samy, M. Fluorescence in itu hybridization study of Her2 oncogene amplification in prostate cancer. Exp. Mol. Pathol., 66: 170 -178, 1999.
    • 33. Ross, J. S., Sheehan, C. E., Hayner-Buchan, A. M., Ambros, R. A., Kallakury, B. V., Kaufman, R. P., Jr., Fisher, H. A., Rifkin, M. D., and Muraca, P. J. Prognostic significance of HER-2/neu gene amplification status by fluorescence in situ hybridization of prostate carcinoma. Cancer (Phila.), 79: 2162-2170, 1997.
    • 34. Kuhn, E. J., Kurnot, R. A., Sesterhenn, I. A., Chang, E. H., and Moul, J. W. Expression of the c-erbB-2 (HER-2/neu) oncoprotein in human prostatic carcinoma. J. Urol., 150: 1427-1433, 1993.
    • 35. Wu, D. Q., Foreman, T. L., Gregory, C. W., McJilton, M. A., Wescott, G. G., Ford, O. H., Alvey, R. F., Mohler, J. L., and Terrian, D. M. Protein kinase C epsilon has the potential to advance the recurrence of human prostate cancer. Cancer Res., 62: 2423-2429, 2002.
    • 36. Mehta, P., Robson, C. N., Neal, D. E., and Leung, H. Y. Fibroblast growth factor receptor-2 mutation analysis in human prostate cancer. Br. J. Urol. Int., 86: 681- 685, 2000.
    • 37. Udayakumar, T. S., Klein, R. D., Maliner, M. S., Nagle, R. B., and Bowden, G. T. Aberrant expression of fibroblast growth factor receptor-1 in prostate epithelial cells allows induction of promatrilysin expression by fibroblast growth factors. Int. J. Cancer, 91: 187-192, 2001.
    • 38. Yeh, S., Lin, H. K., Kang, H. Y., Thin, T. H., Lin, M. F., and Chang, C. From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc. Natl. Acad. Sci. USA, 96: 5458 -5463, 1999.
    • 39. Sheta, E. A., Trout, H., Gildea, J. J., Harding, M. A., and Theodorescu, D. Cell density mediated pericellular hypoxia leads to induction of HIF-1 via nitric oxide and Ras/MAP kinase mediated signaling pathways. Oncogene, 20: 7624 -7634, 2001.
    • 40. Wang, Z., Tseng, C. P., Pong, R. C., Chen, H., McConnell, J. D., Navone, N., and Hsieh, J. T. The mechanism of growth-inhibitory effect of DOC-2/DAB2 in prostate cancer- characterization of a novel GTPase-activating protein associated with N-terminal domain of DOC-2/ DAB2. J. Biol. Chem., 277: 12622-12631, 2002.
    • 41. Zachos, G., and Sandidos, D. A. Expression of ras proto-oncogenes: regulation and implications in the development of human tumors. Crit. Rev. Oncol. Hematol., 26: 65-75, 1997.
    • 42. Shannon, K. M. The Ras pathway as a target for cancer therapy. Proc. Am. Assoc. Cancer Res., 43: 489, 2002.
    • 43. Frame, M. C. Src in cancer: deregulation and consequences for cell behavior. Biochim. Biophys. Acta, 1602: 114 -130, 2002.
    • 44. Castoria, G., Migliaccio, A., Di Domenico, M., Barone, M. V., Bilancio, A., and Auricchio, F. Activation of the Src/Ras/Erk signalling pathway is required for steroid-induced DNA synthesis. Pflugers Arch., 439: 52, 2000.
    • 45. Migliaccio, A., Piccolo, D., Castoria, G., Di Domenico, M., Bilancio, A., Lombardi, M., Gong, W. R., Beato, M., and Auricchio, F. Activation of the Src/p21(ras)/Erk pathway by progesterone receptor via cross-talk with estrogen receptor. EMBO J., 17: 2008 -2018, 1998.
    • 46. Ishida, M., Ishida, T., Thomas, S. M., and Berk, B. C. Activation of extracellular signal-regulated kinases (ERK1/2) by angiotensin II is dependent on c-Src in vascular smooth muscle cells. Circ. Res., 82: 7-12, 1998.
    • 47. Thomas, S. M., and Brugge, J. S. Cellular functions regulated by Src family kinases. Annu. Rev. Cell Dev. BI., 13: 513- 609, 1997.
    • 48. Feldman, B. J., and Feldman, D. The development of androgenindependent prostate cancer. Nat. Rev., 1: 34 - 45, 2001.
    • 49. Lin, H. K., Adam, R. M., Santiestevan, E., and Freeman, M. R. The phosphatidylinositol 3 kinase pathway is a dominant growth factoractivated cell survival pathway in LNCaP. Cancer Res. 59: 2891-2897.
    • 50. Gustin, J. A., Maehama, T., Dixon, J. E., and Donner, D. B. The PTEN tumor suppressor protein inhibits tumor necrosis factor-induced nuclear factor B activity. J. Biol. Chem., 276: 27740 -27744, 2001.
    • 51. Nicholson, K. M., and Anderson, N. G. The protein kinase B/Akt signaling pathway in human malignancy. Cell. Signal., 14: 381-395, 2002.
    • 52. Reiss, K., Wang, J. Y., Romano, G., Furnari, F. B., Cavenee, W. K., Morrione, A., Tu, X., and Baserga, R. IGF-I receptor signaling in a prostatic cancer cell line with a PTEN mutation. Oncogene, 19: 2687- 2694, 2000.
    • 53. Wu, X., Senechal, K., Neshat, M. S., Whang, Y. E., and Sawyers, C. L. The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc. Natl. Acad. Sci. USA, 95: 15587-15591, 1998.
    • 54. Lu, Y., Hui Liu, J., Hang, J., Ang, H., Oul, D., McMurray, J. S., Ang, S., and Ung, W. A. Involvement of Src family protein tyrosine kinases and the SHP-1 tyrosine phosphatase in the phosphotyrosine dependent regulation of PTEN activity. Proc. Am. Assoc. Cancer Res., 43: 154, 2002.
    • 55. Jull, B. A., Plummer, H. K., and Schuller, H. M. Nicotinic receptormediated activation by the tobacco-specific nitrosamine NNK of a Raf-1/MAP kinase pathway, resulting in phosphorylation of c-myc in human small cell lung carcinoma cells and pulmonary neuroendocrine cells. J. Cancer Res. Clin. Oncol., 127: 707-717, 2001.
    • 56. Majka, M., Hershock, D., Ratajczak, J., Gontarewicz, A., Gewirtz, A. M., and Ratajczak, M. Z. Differentiating normal human megakaryoblasts express APO-Fas (CD95), TNF-RII, secrete several megakaryopoietic inhibitors and undergo apoptosis; an important role of thrombopoietin (TPO), MYB and PI3K-Akt-BAD axis in inhibiting apoptosis in normal megakaryocytic precursors. Blood, 94: 2155, 1999.
    • 57. Kaltz-Wittmer, C., Klenk, U., Glaessgen, A., Aust, D. E., Diebold, J., Lohrs, U., and Baretton, G. B. FISH analysis of gene aberrations (MYC, CCND1, ERBB2, RB, and AR) in advanced prostatic carcinomas before and after androgen deprivation therapy. Lab. Invest., 80: 1455-1464, 2000.
    • 58. Latil, A., and Lidereau, R. Genetic aspects of prostate cancer. Virchows Arch., 432: 389 - 406, 1998.
    • 59. Grad, J. M., Dai, J. L., Wu, S., and Burnstein, K. L. Multiple androgen response elements and a Myc consensus site in the androgen receptor (AR) coding region are involved in androgen-mediated upregulation of AR messenger RNA. Mol. Endocrinol., 13: 1896 -1911, 1999.
    • 60. Benard, J. Genetic alterations associated with metastatic dissemination and chemoresistance in neuroblastoma. Eur. J. Cancer, 31A: 560 -564, 1995.
    • 61. Trock, B. J., Leonessa, F., and Clarke, R. Multidrug resistance in breast cancer: a meta-analysis of MDR1/gp170 expression and its possible functional significance. J. Natl. Cancer Inst., 89: 917-931, 1997.
    • 62. Weinstein-Oppenheimer, C. R., Blalock, W. L., Steelman, L. S., Chang, F. M., and McCubrey, J. A. The Raf signal transduction cascade as a target for chemotherapeutic intervention in growth factor-responsive tumors. Pharmacol. Ther., 88: 229 -279, 2000.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article