LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Petrovich, M.N.; Poletti, F.; Wooler, J.P.; Heidt, A.M.; Baddela, N.K.; Li, Zhihong; Gray, D.R.; Slavík, R.; Parmigiani, F.; Wheeler, N.V.; Hayes, John; Numkam Fokoua, Eric; Grüner-Nielsen, L.; Pálsdóttir, B.; Phelan, R.; Kelly, B.; O'Carroll, J.; Becker, M.; MacSuibhne, N.; Zhao, J.; Garcia Gunning, F.C.; Ellis, A.D.; Petropoulos, P.; Alam, S.U.; Richardson, D.J. (2013)
Languages: English
Types: Article
Subjects:
The first demonstration of a hollow core photonic bandgap fiber (HC-PBGF) suitable for high-rate data transmission in the 2 µm waveband is presented. The fiber has a record low loss for this wavelength region (4.5 dB/km at 1980 nm) and a >150 nm wide surface-mode-free transmission window at the center of the bandgap. Detailed analysis of the optical modes and their propagation along the fiber, carried out using a time-of-flight technique in conjunction with spatially and spectrally resolved (S2) imaging, provides clear evidence that the HC-PBGF can be operated as quasi-single mode even though it supports up to four mode groups. Through the use of a custom built Thulium doped fiber amplifier with gain bandwidth closely matched to the fiber's low loss window, error-free 8 Gbit/s transmission in an optically amplified data channel at 2008nm over 290m of 19 cell HC-PBGF is reported.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 6. R. Amezcua-Correa, N. G. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, “Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers,” Opt. Express 14(17), 7974-7985 (2006).
    • 7. N. K. Baddela, M. N. Petrovich, Y. Jung, J. R. Hayes, N. V. Wheeler, D. R. Gray, N. Wong, F. Parmigiani, E. Numkam, J. P. Wooler, F. Poletti, and D. J. Richardson, “First demonstration of a low loss 37-cell hollow core photonic bandgap fiber and its use for data transmission,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu2K.3.
    • 8. F. Poletti, E. R. Numkam Fokoua, M. N. Petrovich, N. V. Wheeler, N. K. Baddela, J. R. Hayes, and D. J. Richardson, “Hollow core photonic bandgap fibers for telecommunications: opportunities and potential issues,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTh1H.3.
    • 9. R. Slavík, M. N. Petrovich, N. V. Wheeler, J. R. Hayes, N. K. Baddela, D. R. Gray, F. Poletti, and D. J. Richardson, “1.45 Tbit/s, low latency data transmission through a 19-cell hollow core photonic band gap fibre,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper Mo.2.F.2.
    • 10. V. A. Sleiffer, Y. Jung, P. Leoni, M. Kuschnerov, N. V. Wheeler, N. K. Baddela, R. G. H. van Uden, C. M. Okonkwo, J. R. Hayes, J. Wooler, E. Numkam, R. Slavik, F. Poletti, M. N. Petrovich, V. Veljanovski, S. U. Alam, D. J. Richardson, and H. de Waardt, “30.7 Tb/s (96x320 Gb/s) DP-32QAM transmission over 19-cell photonic band gap fiber, ” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2013), paper OW1I.5.
    • 11. Y. Jung, V. A. J. M. Sleiffer, N. K. Baddela, M. N. Petrovich, J. R. Hayes, N. V. Wheeler, D. R. Gray, E. R. Numkam Fokoua, J. Wooler, N. Wong, F. Parmigiani, S. Alam, J. Surof, M. Kuschnerov, V. Veljanovski, H. de Waardt, F. Poletti, and D. J. Richardson, “First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.3.
    • 12. P. J. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. A. Birks, J. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236- 244 (2005).
    • 13. J. K. Lyngsø, B. J. Mangan, C. Jakobsen, and P. J. Roberts, “7-cell core hollow-core photonic crystal fibers with low loss in the spectral region around 2 microm,” Opt. Express 17(26), 23468-23473 (2009).
    • 14. R. A. Garnham, D. G. Cunningham, and W. A. Stallard, “34 Mbit/s optical fibre transmission system experiment at a wavelength of 2.4 μm,” Electron. Lett. 23(20), 1063-1064 (1987).
    • 15. N. Mac Suibhne, Z. Li, B. Baeuerle, J. Zhao, J. P. Wooler, S. U. Alam, F. Poletti, M. N. Petrovich, A. Heidt, I. Giles, D. J. Giles, B. Pálsdóttir, L. Grüner-Nielsen, R. Phelan, J. O'Carroll, B. Kelly, D. Murphy, A. Ellis, D. J. Richardson, and F. C. Garcia Gunning, “Wavelength division multiplexing at 2μm,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper Th.3.A.3.
    • 16. M. N. Petrovich, F. Poletti, J. Wooler, A. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam Fokoua, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, M. Becker, N. MacSuibhne, J. Zhao, F. C. Garcia Gunning, A. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “First demonstration of 2µm data transmission in a low-loss hollow core photonic bandgap fiber,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper Th.3.A.5.
    • 17. N. V. Wheeler, M. N. Petrovich, N. K. Baddela, J. R. Hayes, E. N. Fokoua, F. Poletti, and D. J. Richardson, “Gas absorption between 1.8 and 2.1 µm in low loss (5.2 dB/km) HC-PBGF,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM3N.5.
    • 18. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233-7243 (2008).
    • 19. R. Phelan, J. O'Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP multiple quantumwell discrete-mode laser diode emitting at 2 μm,” IEEE Photon. Technol. Lett. 24(8), 652-654 (2012).
    • 20. Eblana Photonics, EP2000-DM Series.
    • 21. Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2 µm,” Opt. Express 21(8), 9289-9297 (2013).
    • 22. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “High-power widely tunable Tm:fibre lasers pumped by an Er,Yb co-doped fibre laser at 1.6 mum,” Opt. Express 14(13), 6084-6090 (2006).
    • 23. J. H. Lee, U.-C. Ryu, S. J. Ahn, and N. Park, “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section,” IEEE Photon. Technol. Lett. 11(1), 42- 44 (1999).
    • 24. Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 - 2050 nm window,” Opt. Express 21(22), 26450-26455 (2013). A m 0 iilfp e r o -20 tu p u t [ d -40 B m ]
  • Discovered through pilot similarity algorithms. Send us your feedback.

  • BioEntity Site Name
    2ofsProtein Data Bank

Share - Bookmark

Funded by projects

  • EC | MODE-GAP
  • RCUK | Transforming the Internet ...
  • SFI | Photonics System Research
  • RCUK | EPSRC Centre for Innovativ...
  • SFI | Digital Signal Processing b...

Cite this article