LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Quegan, S.; Lomas, M.R. (2015)
Publisher: Institute of Electrical and Electronics Engineers
Languages: English
Types: Article
Subjects:
Radio waves traversing the Earth's ionosphere suffer from Faraday rotation with noticeable effects on measurements from lower frequency space-based radars, but these effects can be easily corrected given estimates of the Faraday rotation angle, i.e., Ω. Several methods to derive Ω from polarimetric measurements are known, but they are affected by system distortions (crosstalk and channel imbalance) and noise. A first-order analysis for the most robust Faraday rotation estimator leads to a differentiable expression for the bias in the estimate of Ω in terms of the amplitudes and phases of the distortion terms and the covariance properties of the target. The analysis applies equally to L-band and P-band. We derive conditions on the amplitudes and phases of the distortion terms that yield the maximum bias and a compact expression for its value for the important case where Ω = 0. Exact simulations confirm the accuracy of the first-order analysis and verify its predictions. Conditions on the distortion amplitudes that yield a given maximum bias are derived numerically, and the maximum bias is shown to be insensitive to the amplitude of the channel imbalance terms. These results are important not just for correcting polarimetric data but also for assessing the accuracy of the estimates of the total electron content derived from Faraday rotation.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] M. P. M. Hall, L. W. Barclay, and M. T. Hewitt, Eds. Propagation of Radiowaves. London, U.K.: The Institution of Electrical Engineers, 1996.
    • [2] P. A. Wright, S. Quegan, N. S. Wheadon, and C. D. Hall, “Faraday rotation effects on L-band spaceborne SAR data,” IEEE Trans. Geosci. Remote Sens., vol. 41, no. 12, pp. 2735-2744, Dec. 2003.
    • [3] A. Freeman and S. S. Saatchi, “On the detection of Faraday rotation in linearly polarized L-band SAR backscatter signatures,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1607-1616, Aug. 2004.
    • [4] S. Quegan et al., Report for Mission Selection: Biomass, Eur. Space Agency, Noordwijk, The Netherlands, ESA SP 1324/1 (vol. 3), 2012.
    • [5] S. H. Bickel and R. H. T. Bates, “Effects of magneto-ionic propagation on the polarization scattering matrix,” Proc. IRE, vol. 53, no. 8, pp. 1089-1091, Aug. 1965.
    • [6] A. Freeman, “Calibration of linearly polarized polarimetric SAR data subject to Faraday rotation,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1617-1624, Aug. 2004.
    • [7] R.-Y. Qi and Y.-Q. Jin, “Analysis of the effects of Faraday rotation on spaceborne polarimetric SAR observations at P-Band,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 5, pp. 1115-1122, May 2007.
    • [8] J. Chen and S. Quegan, “Improved estimators of Faraday rotation in spaceborne polarimetric SAR data,” IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 846-850, Oct. 2010.
    • [9] C. Senior et al., “E and F region study of the evening sector auroral oval: A Chatanika/Dynamics Explorer 2/NOAA 6 comparison,” J. Geophys. Res.”Space Phys., vol. 92, no. A3, pp. 2477-2494, Mar. 1987.
    • [10] J. S. Kim, K. P. Papathanassiou, S. Quegan, and N. Rogers, “Estimation and correction of scintillation effects on spaceborne P-band SAR images,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., Munich, Germany, pp. 5101-5104, Jul. 22-27, 2012.
    • [11] J. S. Kim, K. P. Papathanassiou, R. Scheiber, and S. Quegan, “Correction of ionospheric scintillation induced distortions on polarimetric SAR data,” IEEE Trans. Geosci. Remote Sens., to be published.
    • [12] F. J. Meyer and J. B. Nicoll, “Prediction, detection, and correction of Faraday rotation in full-polarimetric L-band SAR data,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 10, pp. 3076-3086, Oct. 2008.
    • [13] N. C. Rogers and S. Quegan, “The accuracy of Faraday rotation estimation in satellite synthetic aperture radar images,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 8, pp. 4799-4807, Aug. 2014.
    • [14] J. S. Kim and K. P. Papathanassiou, “Faraday rotation estimation performance analysis,” in Proc. 8th EUSAR Conf., Aachen, Germany, Jun. 7-10, 2010, pp. 182-185.
    • [15] N. R. Goodman, “Statistical analysis based on a certain multivariate Gaussian distribution (An introduction),” Ann. Math. Stat., vol. 34, no. 1, pp. 152-177, Mar. 1963.
    • [16] J. Chen, S. Quegan, and X. J. Yin, “Calibration of spaceborne linearly polarized low frequency SAR using polarimetric selective radar calibrators,” Progr. Electromagn. Res., vol. 114, pp. 89-111, 2011.
    • [17] A. Freeman, X. Pi, and B. Chapman, “Calibration of PALSAR polarimetric data,” presented at the 4th Int. Workshop Science Applications SAR Polarimetric Interferometry-PolInSAR, Frascati, Italy, Jan. 26-30, 2009, Paper ESA SP-668.
    • [18] S. Quegan and M. R. Lomas, “The interaction between Faraday rotation and system effects in synthetic aperture radar measurements of backscatter and biomass,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 8, pp. 4299-4312, Aug. 2015.
    • [19] M. Fujita, “Polarimetric calibration of space SAR data subject to Faraday rotation-A three target approach,” in Proc. IEEE IGARSS, Seoul, Korea, 2005, pp. 5497-5500.
    • [20] H. Kimura, “Calibration of polarimetric PALSAR imagery affected by Faraday rotation using polarization orientation,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 12, pp. 3943-3950, Dec. 2009.
    • [21] M. Shimada, O. Isoguchi, T. Tadono, and K. Isono, “PALSAR radiometric and geometric calibration,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 12, pp. 3915-3932, Dec. 2009.
    • [22] A. Takeshiro, T. Furuya, and H. Fukuchi, “Verification of polarimetric calibration method including Faraday rotation compensation using PALSAR data,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 12, pp. 3960-3968, Dec. 2009.
    • [23] R. Touzi and M. Shimada, “Polarimetric PALSAR calibration,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 12, pp. 3951-3959, Dec. 2009
    • [24] A. Freeman, “SAR calibration: An overview,” IEEE Trans. Geosci. Remote Sens., vol. 30, no. 11, pp. 1107-1121, Nov. 1992.
    • [25] S. Quegan, “A unified algorithm for phase and cross-talk calibration of polarimetric data-theory and observations,” IEEE Trans. Geosci. Remote Sens., vol. 32, no. 1, pp. 89-99, Jan. 1994.
    • [26] M. Shimada, “Model-based polarimetric SAR calibration method using forest and surface-scattering targets,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 5, pp. 1712-1733, May 2011.
    • [27] P. López-Dekker et al., “BIOMASS end-to-end mission performance simulator,” in Proc. IEEE IGARSS, Vancouver, BC, Canada, 2011, pp. 4249-4252.
    • [28] M. J. Soja, G. Sandberg, and L. M. H. Ulander, “Regression-based retrieval of boreal forest biomass in sloping terrain using P-band SAR backscatter intensity data,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 2646-2665, May 2013.
    • [29] J.-S. Lee, D. L. Schuler, and T. L. Ainsworth, “Polarimetric SAR data compensation for terrain azimuth slope variation,” IEEE Trans. Geosci. Remote Sens., vol. 38, no. 5, pp. 2153-2163, Sep. 2000.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article