LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Baltierra-Jasso, Laura E.; Morten, Michael J.; Laflor, Linda; Quinn, Steven D.; Magennis, Steven W. (2015)
Publisher: American Chemical Society
Languages: English
Types: Article
Subjects:
It is clear that a crowded environment influences the structure, dynamics, and interactions of biological molecules, but the complexity of this phenomenon demands the development of new experimental and theoretical approaches. Here we use two complementary single-molecule FRET techniques to show that the kinetics of DNA base pairing and unpairing, which are fundamental to both the biological role of DNA and its technological applications, are strongly modulated by a crowded environment. We directly observed single DNA hairpins, which are excellent model systems for studying hybridization, either freely diffusing in solution or immobilized on a surface under crowding conditions. The hairpins followed two-state folding dynamics with a closing rate increasing by 4-fold and the opening rate decreasing 2-fold, for only modest concentrations of crowder [10% (w/w) polyethylene glycol (PEG)]. These experiments serve both to unambiguously highlight the impact of a crowded environment on a fundamental biological process, DNA base pairing, and to illustrate the benefits of single-molecule approaches to probing the structure and dynamics of complex biomolecular systems.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) Mathew-Fenn, R. S.; Das, R.; Harbury, P. A. B. Science 2008, 322, 446.
    • (2) Wozńiak, A. K.; Schröder, G. F.; Grubmüller, H.; Seidel, C. A. M.; Oesterhelt, F. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 18337.
    • (3) Arslan, S.; Khafizov, R.; Thomas, C. D.; Chemla, Y. R.; Ha, T.
    • Science 2015, 348, 344.
    • (4) Zhang, D. Y.; Seelig, G. Nat. Chem. 2011, 3, 103.
    • (5) Bloomfield, V. A.; Crothers, D. M.; Tinoco, I., Jr. Nucleic Acids: Structures, Properties and Functions; University Science Books: Sausalito, CA, 2000.
    • (6) Mourao, M. A.; Hakim, J. B.; Schnell, S. Biophys. J. 2014, 107, 2761.
    • (7) Gnutt, D.; Gao, M.; Brylski, O.; Heyden, M.; Ebbinghaus, S.
    • Angew. Chem., Int. Ed. 2015, 54, 2548.
    • (8) Zhou, H.-X.; Rivas, G.; Minton, A. P. Annu. Rev. Biophys. 2008, 37, 375.
    • (9) Sharp, K. A. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 7990.
    • (10) Knowles, D. B.; LaCroix, A. S.; Deines, N. F.; Shkel, I.; Record, M. T., Jr. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 12699.
    • (11) Kuznetsova, I. M.; Zaslavsky, B. Y.; Breydo, L.; Turoverov, K.
    • K.; Uversky, V. N. Molecules 2015, 20, 1377.
    • (12) Parsegian, V. A.; Rand, R. P.; Rau, D. C. Proc. Natl. Acad. Sci. U.
    • S. A. 2000, 97, 3987.
    • (13) Sapir, L.; Harries, D. Curr. Opin. Colloid Interface Sci. 2015, 20, 3.
    • (14) Hyeon, C.; Lee, J.; Yoon, J.; Hohng, S.; Thirumalai, D. Nat.
    • Chem. 2012, 4, 907.
    • (15) Lu, H. P.; Xun, L. Y.; Xie, X. S. Science 1998, 282, 1877.
    • (16) Nakano, S.-i.; Miyoshi, D.; Sugimoto, N. Chem. Rev. 2014, 114, 2733.
    • (17) Roy, R.; Hohng, S.; Ha, T. Nat. Methods 2008, 5, 507.
    • (18) Dupuis, N. F.; Holmstrom, E. D.; Nesbitt, D. J. Proc. Natl. Acad.
    • Sci. U. S. A. 2014, 111, 8464.
    • (19) Paudel, B. P.; Rueda, D. J. Am. Chem. Soc. 2014, 136, 16700.
    • (20) Holmstrom, E. D.; Dupuis, N. F.; Nesbitt, D. J. J. Phys. Chem. B 2015, 119, 3687.
    • (21) Yin, Y.; Zhao, X. S. Acc. Chem. Res. 2011, 44, 1172.
    • (22) Tsukanov, R.; Tomov, T. E.; Masoud, R.; Drory, H.; Plavner, N.; Liber, M.; Nir, E. J. Phys. Chem. B 2013, 117, 11932.
    • (23) Soranno, A.; Koenig, I.; Borgia, M. B.; Hofmann, H.; Zosel, F.; Nettels, D.; Schuler, B. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 4874.
    • (24) Sisamakis, E.; Valeri, A.; Kalinin, S.; Rothwell, P. J.; Seidel, C. A.
    • M. Methods Enzymol. 2010, 475, 455.
    • (25) Sabir, T.; Schröder, G. F.; Toulmin, A.; McGlynn, P.; Magennis, S. W. J. Am. Chem. Soc. 2011, 133, 1188.
    • (26) Kalinin, S.; Valeri, A.; Antonik, M.; Felekyan, S.; Seidel, C. A. M.
    • J. Phys. Chem. B 2010, 114, 7983.
    • (27) Van Orden, A.; Jung, J. Biopolymers 2008, 89, 1.
    • (28) Ellis, R. J. Trends Biochem. Sci. 2001, 26, 597.
    • (29) Jones, M. R.; Seeman, N. C.; Mirkin, C. A. Science 2015, 347, 840.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article