LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Mullis, AM; Bigg, TD; Adkins, NJ (2015)
Publisher: Elsevier
Languages: English
Types: Article
Subjects:
Quantitative image analysis has been used to investigate the phase composition of gas atomized powders of a Raney type Ni catalyst precursor alloys of composition Al-27.5 at.% Ni in the powder size range 150-212 μm. We find that there are considerable variations in phase composition both between powders from the same batch and as a function distance from the particle surface within individual particles. Such variations may have significant implications for the future production and uptake of such catalysts, including the necessity for post-production crushing of gas atomized powders. Models are proposed to account for both variations.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] S.R. Montgomery, Catalysis of Organic Reactions, Marcel Dekker, New York, 1981.
    • [2] Catalytic hydrogenation of carboxylic acids and esters, in, Kyowa Hakko Kogyo Co. Ltd., GB, 1966.
    • [3] R.J. Allain, V.L. Seale, Acrylonitrile hydrolysis and catalyst useful therefor, in, Nalco Chemical Co., US, 1975.
    • [4] M. Raney, Method of producing finely-divided nickel, in, US, 1927.
    • [5] P. Fouilloux, G.A. Martin, A.J. Renouprez, B. Moraweck, B. Imelik, M. Prettre, Texture and structure of Raney nickel, J. Catal., 25 (1972) 212-222.
    • [6] F. Devred, A.H. Gieske, N. Adkins, U. Dahlborg, C.M. Bao, M. Calvo-Dahlborg, J.W. Bakker, B.E. Nieuwenhuys, Influence of phase composition and particle size of atomised Ni-Al alloy samples on the catalytic performance of Raney-type nickel catalysts, Appl. Catal. A, 356 (2009) 154-161.
    • [7] A.B. Fasman, V.F. Timofeeva, V.N. Rechkin, Y.F. Klyuchnikov, I.A. Sapukov, Effect of the composition of a nickel-aluminum alloy on the structure and specific activity of a Raney nickel catalyst, Kinet. Katal., 13 (1972) 1513-1519.
    • [8] R. Wang, H. Chen, Z. Lu, S. Qiu, T. Ko, Structural transitions during aluminum leaching of NiAl3 phase in a Raney Ni-Al alloy, J. Mater. Sci., 43 (2008) 5712-5719.
    • [9] A.J. Smith, D.L. Trimm, The preparation of skeletal catalysts, Annu. Rev. Mater. Res., 35 (2005) 127-147.
    • [10] M.L. Bakker, D.J. Young, M.S. Wainwright, Selective leaching of nickelaluminum (NiAl3 and Ni2Al3) intermetallics to form Raney nickels, J. Mater. Sci., 23 (1988) 3921-3926.
    • [11] H. Warlimont, U. Kuehn, N. Mattern, Rapidly quenched Raney catalyst precursors, Mater. Sci. Eng. A, 226-228 (1997) 900-904.
    • [12] H. Lei, Z. Song, D. Tan, X. Bao, X. Mu, B. Zong, E. Min, Preparation of novel Raney-Ni catalysts and characterization by XRD, SEM and XPS, Appl. Catal. A, 214 (2001) 69-76.
    • [13] D. Tourret, G. Reinhart, C.-A. Gandin, G.N. Iles, U. Dahlborg, M. CalvoDahlborg, C.M. Bao, Gas atomization of Al-Ni powders: Solidification modeling and neutron diffraction analysis, Acta Mater., 59 (2011) 6658-6669.
    • [14] F. Devred, G. Reinhart, G.N. Iles, B. van der Klugt, N.J. Adkins, J.W. Bakker, B.E. Nieuwenhuys, Synchrotron X-ray microtomography of Raney-type nickel catalysts prepared by gas atomisation: Effect of microstructure on catalytic performance, Catal. Today, 163 (2011) 13-19.
    • [15] A. Ilbagi, H. Henein, A.B. Phillion, Phase quantification of impulse atomized Al68.5Ni31.5 alloy, J. Mater. Sci., 46 (2011) 6235-6242.
    • [16] M. Kearns, Development and applications of ultrafine aluminum powders, Mater. Sci. Eng. A, 375-377 (2004) 120-126.
    • [17] N. Zeoli, S. Gu, S. Kamnis, Numerical modelling of metal droplet cooling and solidification, Int. J. Heat Mass Transfer, 51 (2008) 4121-4131.
    • [18] A.M. Mullis, L. Farrell, R.F. Cochrane, N.J. Adkins, Estimation of cooling rates during close-coupled gas atomization using secondary dendrite arm spacing measurement, Metall. Mater. Trans. B, 44 (2013) 992-999.
    • [19] H.W. Kerr, W. Kurz, Solidification of peritectic alloys, Int. Mater. Rev., 41 (1996) 129-164.
    • [20] D.H. St John, L.M. Hogan, A simple prediction of the rate of the peritectic transformation, Acta Metall., 35 (1987) 171-174.
    • [21] C.M. Bao, U. Dahlborg, N. Adkins, M. Calvo-Dahlborg, Structural characterisation of Al-Ni powders produced by gas atomisation, J. Alloys Compd., 481 (2009) 199-206.
    • [22] C. Pohla, P.L. Ryder, Crystalline and quasicrystalline phases in rapidly solidified AI-Ni alloys, Acta Mater., 45 (1997) 2155-2166.
    • [23] O. Shuleshova, D. Holland-Moritz, W. Löser, G. Reinhart, G.N. Iles, B. Büchner, Metastable formation of decagonal quasicrystals during solidification of undercooled Al-Ni melts: In situ observations by synchrotron radiation, EPL, 80 (2009).
    • [24] O. Shuleshova, W. Löser, D. Holland-Moritz, D.M. Herlach, J. Eckert, Solidification and melting of high temperature materials: in situ observations by synchrotron radiation, J. Mater. Sci., 47 (2012) 4497-4513.
    • [25] F. Devred, G. Reinhart, G.N. Iles, U. Dahlborg, M. Calvo-Dahlborg, ESRF Experimental report HS-3612, in, 2009.
    • [26] V. Anand, A.J. Kaufman, N.J. Grant, Rapid solidification processing: Principles and technologies II, Claitor, Baton Rouge, LA, 1978.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article