LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Quas, Anthony Nicholas
Languages: English
Types: Doctoral thesis
Subjects: QA
The thesis consists of a study of problems in ergodic theory relating to one-dimensional dynamical systems, Markov chains and generalizations of Markov chains. It is divided into chapters, three of which have appeared in the literature as papers. Chapter 1 looks\ud at continuous families of circle maps and investigates conditions under which there is a weak*-continuous family of invariant measures. Sufficient conditions are exhibited and the necessity of these conditions is investigated. Chapter 2 is about expanding maps of the interval and the circle, and their relation with g-measures and generalized baker's transformations. The g-measures are generalizations of Markov chains to stochastic processes with infinite memory and generalized baker's transformations are geometric realizations of these. The chapter is based around the question of whether there exist expanding maps\ud preserving Lebesgue measure, for which Lebesgue measure is not ergodic. Results are known if the map is sufficiently differentiable (for example C1+α), but the C1 case is still unclear. The chapter contains some partial solutions to this question. Chapter 3 is about\ud representation of Markov chains on compact manifolds by measured collections of smooth maps. Given a measured collection of maps, a Markov chain is induced in a natural fashion. This chapter is about reversing this process. Chapter 4 describes a specialization of the setting of Chapter 3 to Markov chains on tori. In this case, it is possible to demand more of the maps of the representation than smoothness. In particular, they can be chosen to be local diffeomorphisms. The chapter also addresses the question of whether in general the maps can be taken to be diffeomorphisms and gives a counterexample showing that there\ud exist Markov chains on tori which do not admit a representation by diffeomorphisms.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article