LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Murphy, John D.; McGuire, R. E.; Bothe, Karsten; Voronkov, V. V.; Falster, Robert J. (2014)
Publisher: Elsevier Science BV
Languages: English
Types: Article
Subjects: TP, TA
Single-crystal Czochralski silicon used for photovoltaics is typically supersaturated with interstitial oxygen at temperatures just below the melting point. Oxide precipitates therefore can form during ingot cooling and cell processing, and nucleation sites are typically vacancy-rich regions. Oxygen precipitation gives rise to recombination centres, which can reduce cell efficiencies by as much as 4% (absolute). We have studied the recombination behaviour in p-type and n-type monocrystalline silicon with a range of doping levels intentionally processed to contain oxide precipitates with a range of densities, sizes and morphologies. We analyse injection-dependent minority carrier lifetime measurements to give a full parameterisation of the recombination activity in terms of Shockley–Read–Hall statistics. We intentionally contaminate specimens with iron, and show recombination activity arises from iron segregated to oxide precipitates and surrounding defects. We find that phosphorus diffusion gettering reduces the recombination activity of the precipitates to some extent. We also find that bulk iron is preferentially gettered to the phosphorus diffused layer rather than to oxide precipitates.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] A. Borghesi, B. Pivac, A. Sassella, A. Stella, Oxygen precipitation in silicon, Journal of Applied Physics 77 (1995) 4169.
    • [2] W. Bergholz, M.J. Binns, G.R. Booker, J.C. Hutchison, S.H. Kinder, S. Messoloras, R.C. Newman, R.J. Stewart, J.G. Wilkes, A study of oxygen precipitation in silicon using high-resolution transmission electron microscopy, small-angle neutron scattering and infrared absorption, Philosophical Magazine B 59 (1989) 499.
    • [3] R. Falster, V.V. Voronkov, V.Y. Resnik, M.G. Milvidskii, Thresholds for effective internal gettering in silicon wafers, Proceedings of the Electrochemical Society, High Purity Silicon, VIII, 2004, pp. 188-201.
    • [4] R.C. Newman, Oxygen diffusion and precipitation in Czochralski silicon, Journal of Physics: Condensed Matter 12 (2000) R335.
    • [5] S.M. Myers, M. Seibt, W. Schröter, Mechanisms of transition-metal gettering in silicon, Journal of Applied Physics 88 (2000) 3795.
    • [6] R.J. Falster, W. Bergholz, The gettering of transition metals by oxygen-related defects in silicon, Journal of the Electrochemical Society 137 (1990) 1548.
    • [7] J. Haunschild, I.E. Reis, J. Geilker, S. Rein, Detecting efficiency-limiting defects in Czochralski-grown silicon wafers in solar cell production using photoluminescence imaging, Physica Status Solidi Rapid Research Letters 5 (2011) 199.
    • [8] P.K. Kulshreshtha, Y. Yoon, K.M. Youssef, E.A. Good, G. Rozgonyi, Oxygen precipitation related stress-modified crack propagation in high growth rate Czochralski silicon wafers, Journal of the Electrochemical Society 159 (2012) H125.
    • [9] R. Søndena, Y. Hu, M. Juel, M.S. Wiig, H. Angelskår, Characterization of the OSFband structure in n-type Cz-Si using photoluminescence-imaging and visual inspection, Journal of Crystal Growth 367 (2013) 68.
    • [10] K. Youssef, M. Shi, C. Radue, E. Good, G. Rozgonyi, Effect of oxygen and associated residual stresses on the mechanical properties of high growth rate Czochralski silicon, Journal of Applied Physics 113 (2013) 133502.
    • [11] H.J. Möller, C. Funke, A. Lawerenz, S. Riedel, M. Werner, Oxygen and lattice distortions in multicrystalline silicon, Solar Energy Materials & Solar Cells 72 (2002) 403.
    • [12] K. Bothe, K. Ramspeck, D. Hinken, C. Schinke, J. Schmidt, S. Herlufsen, R. Brendel, J. Bauer, J.-M. Wagner, N. Zakharov, O. Breitenstein, Luminescence emission from forward- and reverse-biased multicrystalline silicon solar cells, Journal of Applied Physics 106 (2009) 104510.
    • [13] M. Tajima, Y. Iwata, F. Okayama, H. Toyota, H. Onodera, T. Sekiguchi, Deep-level photoluminescence due to dislocations and oxygen precipitates in multicrystalline Si, Journal of Applied Physics 111 (2012) 113523.
    • [14] V.V. Voronkov, R. Falster, Grown-in microdefects, residual vacancies and oxygen precipitation bands in Czochralski silicon, Journal of Crystal Growth 204 (1999) 462.
    • [15] V.V. Voronkov, The mechanism of swirl defects formation in silicon, Journal of Crystal Growth 59 (1982) 625.
    • [16] L. Chen, X. Yu, P. Chen, P. Wang, X. Gu, J. Lu, D. Yang, Effect of oxygen precipitation on the performance of Czochralski silicon solar cells, Solar Energy Materials & Solar Cells 95 (2011) 3148.
    • [17] W. Seifert, M. Kittler, M. Seibt, A. Buczkowski, Contrastive recombination behaviour of metal silicide and oxygen precipitates in n-type silicon: attempt at an explanation, Solid State Phenomena 47-48 (1996) 365-370.
    • [18] F.G. Kirscht, Y. Furukawa, W. Seifert, K. Schmalz, A. Buczkowski, S.B. Kim, H. Abe, H. Koya, J. Bailey, Electrical characteristics of oxygen precipitation related defects in Czochralski silicon wafers, Materials Science and Engineering B 36 (1996) 230-236.
    • [19] J.D. Murphy, K. Bothe, M. Olmo, V.V. Voronkov, R.J. Falster, The effect of oxide precipitates on minority carrier lifetime in p-type silicon, Journal of Applied Physics 110 (2011) 053713.
    • [20] V. Lang, J.D. Murphy, R.J. Falster, J.J.L. Morton, Spin-dependent recombination in Czochralski silicon containing oxide precipitates, Journal of Applied Physics 111 (2012) 013710.
    • [21] J.D. Murphy, K. Bothe, R. Krain, V.V. Voronkov, R.J. Falster, Parameterisation of injection-dependent lifetime measurements in semiconductors in terms of Shockley-Read-Hall statistics: an application to oxide precipitates in silicon, Journal of Applied Physics 111 (2012) 113709.
    • [22] K. Bothe, R.J. Falster, J.D. Murphy, Room temperature sub-bandgap photoluminescence from silicon containing oxide precipitates, Applied Physics Letters 101 (2012) 032107.
    • [23] J.D. Murphy, K. Bothe, V.V. Voronkov, R.J. Falster, On the mechanism of recombination at oxide precipitates in silicon, Applied Physics Letters 102 (2013) 042105.
    • [24] W. Shockley, W.T. Read, Statistics of the recombinations of holes and electrons, Physical Review 87 (1952) 835.
    • [25] R.N. Hall, Electron-hole recombination in germanium, Physical Review 87 (1952) 387.
    • [26] D. Macdonald, A. Cuevas, Validity of simplified Shockley-Read-Hall statistics for modeling carrier lifetimes in crystalline silicon, Physical Review B: Condensed Matter 67 (2003) 075203.
    • [27] S. Rein, T. Rehrl, W. Warta, S.W. Glunz, Lifetime spectroscopy for defect characterization: systematic analysis of the possibilities and restrictions, Journal of Applied Physics 91 (2002) 2059.
    • [28] D. Macdonald, A. Cuevas, Trapping of minority carriers in multicrystalline silicon, Applied Physics Letters 74 (1999) 1710.
    • [29] A.G. Aberle, T. Lauinger, J. Schmidt, R. Hezel, Injection-level dependent surface recombination velocities at the silicon-plasma silicon nitride interface, Applied Physics Letters 66 (1995) 2828.
    • [30] S. Rein, S.W. Glunz, Electronic properties of interstitial iron and iron-boron pairs determined by means of advanced lifetime spectroscopy, Journal of Applied Physics 98 (2005) 113711.
    • [31] J. Schmidt, Effect of dissociation of iron-boron pairs in crystalline silicon on solar cell properties, Progress in Photovoltaics: Research and Applications 13 (2005) 325.
    • [32] H. Nagel, B. Lenkeit, W. Schmidt, Fill factor losses due to injection-level dependent bulk lifetimes in crystalline silicon solar cells, in: 20th European Photovoltaic Solar Energy Conference, Barcelona, Spain, 2005, pp. 1271-1274.
    • [33] M.A. Green, Intrinsic concentration, effective densities of states, and effective mass in silicon, Journal of Applied Physics 67 (1990) 2944.
    • [34] J.D. Murphy, R.J. Falster, Contamination of silicon by iron at temperatures below 800 1C, Physica Status Solidi Rapid Research Letters 5 (2011) 370.
    • [35] J.D. Murphy, R.J. Falster, The relaxation behaviour of supersaturated iron in single-crystal silicon at 500-750 1C, Journal of Applied Physics 112 (2012) 113506.
    • [36] T. Lauinger, J. Moschner, A.G. Aberle, R. Hezel, Optimization and characterization of remote plasma-enhanced chemical vapor deposition silicon nitride for the passivation of p-type crystalline silicon surfaces, Journal of Vacuum Science & Technology A 16 (1998) 530.
    • [37] P. Karzel, P. Frey, S. Fritz, G. Hahn, Influence of hydrogen on interstitial iron concentration in multicrystalline silicon during annealing steps, Journal of Applied Physics 113 (2013) 114903.
    • [38] R.A. Sinton, A. Cuevas, Contactless determination of current-voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steadystate photoconductance data, Applied Physics Letters 69 (1996) 2510.
    • [39] K. Bothe, J. Schmidt, Electronically activated boron-oxygen-related recombination centers in crystalline silicon, Journal of Applied Physics 99 (2006) 013701.
    • [40] G. Zoth, W. Bergholz, A fast, preparation-free method to detect iron in silicon, Journal of Applied Physics 67 (1990) 6764.
    • [41] W. Wijaranakula, The reaction kinetics of iron-boron pair formation and dissociation in p-type silicon, Journal of the Electrochemical Society 140 (1993) 275.
    • [42] D.H. Macdonald, L.J. Geerligs, A. Azzizi, Iron detection in crystalline silicon by carrier lifetime measurements for arbitrary injection and doping, Journal of Applied Physics 95 (2004) 1021.
    • [43] H. Schlangenotto, H. Maeder, W. Gerlach, Temperature dependence of the radiative recombination coefficient in silicon, Physica Status Solidi A Applications and Material Science 21 (1974) 357.
    • [44] M.J. Kerr, A. Cuevas, General parameterization of Auger recombination in crystalline silicon, Journal of Applied Physics 91 (2002) 2473.
    • [45] D. Macdonald, L.J. Geerligs, Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon, Applied Physics Letters 85 (2004) 4061.
    • [46] M. Koizuka, H. Yamada-Kaneta, Electron spin resonance centers associated with oxygen precipitates in Czochralski silicon crystals, Journal of Applied Physics 88 (2000) 1784.
    • [47] M. Koizuka, H. Yamada-Kaneta, Gap states caused by oxygen precipitation in Czochralski silicon crystals, Journal of Applied Physics 84 (1998) 4255.
    • [48] E. Cartier, J.H. Stathis, D.A. Buchanan, Passivation and depassivation of silicon dangling bonds at the Si/SiO2 interface by atomic hydrogen, Applied Physics Letters 63 (1993) 1510.
    • [49] A.G. Aberle, Overview on SiN surface passivation of crystalline silicon solar cells, Solar Energy Materials and Solar Cells 65 (2001) 239-248.
    • [50] V. Kveder, M. Kittler, W. Schröter, Recombination activity of contaminated dislocations in silicon: a model describing electron-beam-induced current contrast behavior, Physical Review B: Condensed Matter 63 (2001) 115208.
    • [51] T.S. Fell, P.R. Wilshaw, M.D. de Coteau, EBIC investigations of dislocations and their interactions with impurities in silicon, Physica Status Solidi A Applications and Material Science 138 (1993) 695.
    • [52] J. Vanhellemont, E. Simoen, A. Kaniava, M. Libezny, C. Claeys, Impact of oxygen related extended defects on silicon diode characteristics, Journal of Applied Physics 77 (1995) 5669.
    • [53] W. Seifert, M. Kittler, J. Vanhellemont, EBIC study of recombination activity of oxygen precipitation related defects in Si, Materials Science and Engineering B 42 (1996) 260.
    • [54] J.M. Hwang, D.K. Schroder, Recombination properties of oxygen-precipitated silicon, Journal of Applied Physics 59 (1986) 2476.
    • [55] D. Macdonald, The emergence of n-type silicon for solar cell manufacture, in: 50th Annual AuSES Conference (Solar 2012), Melbourne, Australia, 2012.
    • [56] A. Cuevas, M.J. Kerr, C. Samundsett, F. Ferrazza, G. Coletti, Millisecond minority carrier lifetimes in n-type multicrystalline silicon, Applied Physics Letters 81 (2002) 4952.
    • [57] T. Schutz-Kuchly, J. Veirman, S. Dubois, D.R. Heslinga, Light-InducedDegradation effects in boron-phosphorus compensated n-type Czochralski silicon, Applied Physics Letters 96 (2010) 093505.
    • [58] M. Rinio, A. Yodyunyong, S. Keipert-Colberg, Y.P.B. Mouafi, D. Borchert, A. Montesdeoca-Santana, Improvement of multicrystalline silicon solar cells by a low temperature anneal after emitter diffusion, Progress in Photovoltaics: Research and Applications 19 (2011) 165.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article