Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wilding, CS; Cadwell, K; Tawn, EJ; Relton, CL; Taylor, GA; Chinnery, PF; Turnbull, DM
Languages: English
Types: Article
Subjects: QH301, QH426
Mutations in a 443-bp amplicon of the hypervariable region HVR1 of the D-loop of mitochondrial DNA (mtDNA) were quantified in DNA extracted from peripheral blood samples of 10 retired radiation workers who had accumulated external radiation doses of .0.9 Sv over the course of their working life and were compared to the levels of mutations in 10 control individuals matched for age and smoking status. The mutation rate in the 10 exposed individuals was 9.92 3 1025 mutations/ nucleotide, and for the controls it was 8.65 3 1025 mutations/ nucleotide, with a procedural error rate of 2.65 3 1025 mutations/ nucleotide. No increase in mtDNA mutations due to radiation exposure was detectable (P 5 0.640). In contrast, chromosomal translocation frequencies, a validated radiobiological technique for retrospective dosimetric purposes, were significantly elevated in the exposed individuals. This suggests that mutations identified through sequencing of mtDNA in peripheral blood lymphocytes do not represent a promising genetic marker of DNA damage after low-dose or low-doserate exposures to ionizing radiation. There was an increase in singleton mutations above that attributable to procedural error in both exposed and control groups that is likely to reflect age-related somatic mutation.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. R. W. Taylor and D. M. Turnbull, Mitochondrial DNA mutations in human disease. Nat. Rev. Genet. 6, 389-402 (2005).
    • 2. D. C. Wallace, J. M. Shoffner, I. Trounce, M. D. Brown, S. W. Ballinger, M. Corral-Debrinski, T. Horton, A. S. Jun and M. T. Lott, Mitochondrial DNA mutations in human degenerative diseases and aging. Biochim. Biophys. Acta 1271, 141-151 (1995).
    • 3. P. F. Chinnery, N. Howell, R. M. Andrews and D. M. Turnbull, Clinical mitochondrial genetics. J. Med. Genet. 36, 425-436 (1999).
    • 4. P. F. Chinnery, Modulating heteroplasmy. Trends Genet. 18, 173-176 (2002).
    • 5. C. Richter, J. W. Park and B. N. Ames, Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. USA 85, 6465-6467 (1988).
    • 6. L. A. Marcelino and W. G. Thilly, Mitochondrial mutagenesis in human cells and tissues. Mutat. Res. 434, 177-203 (1999).
    • 7. A. Chomyn and G. Attardi, MtDNA mutations in aging and apoptosis. Biochem. Biophys. Res. Commun. 304, 519-529 (2003).
    • 8. A. May and V. A. Bohr, Gene-specific repair of gamma-ray-induced DNA strand breaks in colon cancer cells: No coupling to transcription and no removal from the mitochondrial genome. Biochem. Biophys. Res. Commun. 269, 433-437 (2000).
    • 9. G. Singh, W. W. Hauswirth, W. E. Ross and A. H. Neims, A method for assessing damage to mitochondrial DNA caused by radiation and epichlorohydrin. Mol. Pharmacol. 27, 167-170 (1985).
    • 10. S. Prithivirajsingh, M. D. Story, S. A. Bergh, F. B. Geara, K. K. Ang, S. M. Ismail, C. W. Stevens, T. A. Buchholz and W. A. Brock, Accumulation of the common mitochondrial DNA deletion induced by ionizing radiation. FEBS Lett. 571, 227-232 (2004).
    • 11. W. F. Blakely, P. G. Prasanna, M. B. Grace and A. C. Miller, Radiation exposure assessment using cytological and molecular biomarkers. Radiat. Prot. Dosim. 97, 17-23 (2001).
    • 12. A. Hamada, N. J. Chaizhunusova, V. A. Saenko, T. I. Rogounovitch, N. Takamura and S. Yamashita, Characteristics of mitochondrial DNA in the peripheral blood cells of residents of Kazakhstan around Semipalatinsk nuclear test site. Int. Congr. Ser. 1258, 169-176 (2003).
    • 13. J. Thacker, The nature of mutants induced by ionising radiation in cultured hamster cells. III. Molecular characterization of HPRT-deficient mutants induced by gamma-rays or alpha-particles showing that the majority have deletions of all or part of the HPRT gene. Mutat. Res. 160, 267-275 (1986).
    • 14. J. B. Little, Radiation carcinogenesis. Carcinogenesis 21, 397-404 (2000).
    • 15. T. M. Wardell, E. Ferguson, P. F. Chinnery, G. M. Borthwick, R. W. Taylor, G. Jackson, A. Craft, R. N. Lightowlers, N. Howell and D. M. Turnbull, Changes in the human mitochondrial genome after treatment of malignant disease. Mutat. Res. 525, 19-27 (2003).
    • 16. L. Forster, P. Forster, S. Lutz-Bonengel, H. Willkomm and B. Brinkmann, Natural radioactivity and human mitochondrial DNA mutations. Proc. Natl. Acad. Sci. USA 99, 13950-13954 (2002).
    • 17. O. A. Ross, P. Hyland, M. D. Curran, B. P. McIlhatton, A. Wikby, B. Johansson, A. Tompa, G. Pawelec, C. R. Barnett and Y. A. Barnett, Mitochondrial DNA damage in lymphocytes: A role in immunosenescence? Exp. Gerontol. 37, 329-340 (2002).
    • 18. E. E. Jazin, L. Cavelier, I. Eriksson, L. Oreland and U. Gyllensten, Human brain contains high levels of heteroplasmy in the noncoding regions of mitochondrial DNA. Proc. Natl. Acad. Sci. USA 93, 12382-12387 (1996).
    • 19. R. Del Bo, M. Crimi, M. Sciacco, G. Malferrari, A. Bordoni, L. Napoli, A. Prelle, I. Biunno, M. Moggio and G. P. Comi, High mutational burden in the mtDNA control region from aged muscles: A single-fiber study. Neurobiol. Aging 24, 829-838 (2003).
    • 20. A. V. Kite and A. R. Britcher, Uncertainties in recorded photon radiation doses at Sellafield. Radiat. Prot. Dosim. 67, 23-32 (1996).
    • 21. J. Cline, J. C. Braman and H. H. Hogrefe, PCR fidelity of Pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res. 24, 3546-3551 (1996).
    • 22. P. Andre, A. Kim, K. Khrapko and W. G. Thilly, Fidelity and mutational spectrum of Pfu DNA polymerase on a human mitochondrial DNA sequence. Genome Res. 7, 843-852 (1997).
    • 23. R. M. Andrews, I. Kubacka, P. F. Chinnery, R. N. Lightowlers, D. M. Turnbull and N. Howell, Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 23, 147-147 (1999).
    • 24. S. Anderson, A. T. Bankier, B. G. Barrell, M. H. L. Debruijn, A. R. Coulson, J. Drouin, I. C. Eperon, D. P. Nierlich, B. A. Roe and I. G. Young, Sequence and organization of the Human mitochondrial genome. Nature 290, 457-465 (1981).
    • 25. R. Chenna, H. Sugawara, T. Koike, R. Lopez, T. J. Gibson, D. G. Higgins and J. D. Thompson, Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31, 3497-3500 (2003).
    • 26. D. K. Simon, M. T. Lin, L. Y. Zheng, G. J. Liu, C. H. Ahn, L. M. Kim, W. M. Mauck, F. Twu, M. F. Beal and D. R. Johns, Somatic mitochondrial DNA mutations in cortex and substantia nigra in aging and Parkinson's disease. Neurobiol. Aging 25, 71-81 (2004).
    • 27. D. Mishmar, E. Ruiz-Pesini, M. Brandon and D. C. Wallace, Mitochondrial DNA-like sequences in the nucleus (NUMTs): Insights into our African origins and the mechanism of foreign DNA integration. Hum. Mutat. 23, 125-133 (2004).
    • 28. R. W. Taylor, G. A. Taylor, C. M. Morris, J. M. Edwardson and D. M. Turnbull, Diagnosis of mitochondrial disease: Assessment of mitochondrial DNA heteroplasmy in blood. Biochem. Biophys. Res. Commun. 251, 883-887 (1998).
    • 29. K. E. Bendall and B. C. Sykes, Length heteroplasmy in the first hypervariable segment of the human mtDNA control region. Am. J. Hum. Genet. 57, 248-256 (1995).
    • 30. D. Wang, D. A. Kreutzer and J. M. Essigmann, Mutagenicity and repair of oxidative DNA damage: insights from studies using defined lesions. Mutat. Res. 400, 99-115 (1998).
    • 31. I. M. Jones, H. Galick, P. Kato, R. G. Langlois, M. L. Mendelsohn, G. A. Murphy, P. Pleshanov, M. J. Ramsey, C. B. Thomas and D. O. Nelson, Three somatic genetic biomarkers and covariates in radiation-exposed Russian cleanup workers of the Chernobyl nuclear reactor 6-13 years after exposure. Radiat. Res. 158, 424-442 (2002).
    • 32. E. J. Tawn, C. A. Whitehouse and R. E. Tarone, FISH chromosome aberration analysis on retired radiation workers from the Sellafield nuclear facility. Radiat. Res. 162, 249-256 (2004).
    • 33. R. W. Taylor, M. J. Barron, G. M. Borthwick, A. Gospel, P. F. Chinnery, D. C. Samuels, G. A. Taylor, S. M. Plusa, S. J. Needham and D. M. Turnbull, Mitochondrial DNA mutations in human colonic crypt stem cells. J. Clin. Invest. 112, 1351-1360 (2003).
    • 34. A. A. Edwards, C. Lindholm, F. Darroudi, G. Stephan, H. Romm, J. Barquinero, L. Barrios, M. R. Caballin, L. Roy and P. Voisin, Review of translocations detected by FISH for retrospective biological dosimetry applications. Radiat. Prot. Dosim. 113, 396-402 (2005).
    • 35. J. K. Wickliffe, B. E. Rodgers, R. K. Chesser, C. J. Phillips, S. P. Gaschak and R. J. Baker, Mitochondrial DNA heteroplasmy in laboratory mice experimentally enclosed in the radioactive Chernobyl environment. Radiat. Res. 159, 458-464 (2003).
    • 36. J. K. Wickliffe, R. K. Chesser, B. E. Rodgers and R. J. Baker, Assessing the genotoxicity of chronic environmental irradiation by using mitochondrial DNA heteroplasmy in the bank vole (Clethrionomys glareolus) at Chornobyl, Ukraine. Environ. Toxicol. Chem. 21, 1249-1254 (2002).
    • 37. R. J. Baker, J. A. Dewoody, A. J. Wright and R. K. Chesser, On the utility of heteroplasmy in genotoxicity studies: An example from Chernobyl. Ecotoxicology 8, 301-309 (1999).
    • 38. A. Biggin, R. Henke, B. Bennetts, D. R. Thorburn and J. Christodoulou, Mutation screening of the mitochondrial genome using denaturing high-performance liquid chromatography. Mol. Genet. Metab. 84, 61-74 (2005).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article