LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Tappert, Claus; Gaensicke, B. T. (Boris T.); Schmidtobreick, Linda; Ribeiro, T. (2011)
Publisher: E D P Sciences
Languages: English
Types: Article
Subjects: QB

Classified by OpenAIRE into

mesheuropmc: endocrine system
arxiv: Astrophysics::Solar and Stellar Astrophysics, Astrophysics::Galaxy Astrophysics, Astrophysics::Earth and Planetary Astrophysics, Astrophysics::Cosmology and Extragalactic Astrophysics
In a previous study, we found that the detached post-common-envelope binary LTT 560 displays an Ha emission line consisting of two anti-phased components. While one of them was clearly caused by stellar activity from the secondary late-type main-sequence star, our analysis indicated that the white dwarf primary star is potentially the origin of the second component. However, the low resolution of the data means that our interpretation remains ambiguous. We here use time-series UVES data to compare the radial velocities of the Ha emission components to those of metal absorption lines from the primary and secondary stars. We find that the weaker component most certainly originates in the white dwarf and is probably caused by accretion. An abundance analysis of the white dwarf spectrum yields accretion rates that are consistent with mass loss from the secondary due to a stellar wind. The second and stronger Ha component is attributed to stellar activity on the secondary star. An active secondary is likely to be present because of the occurrence of a flare in our time-resolved spectroscopy. Furthermore, Roche tomography indicates that a significant area of the secondary star on its leading side and close to the first Lagrange point is covered by star spots. Finally, we derive the parameters for the system and place it in an evolutionary context. We find that the white dwarf is a very slow rotator, suggesting that it has had an angular-momentum evolution similar to that of field white dwarfs. We predict that LTT 560 will begin mass transfer via Roche-lobe overflow in similar to 3.5 Gyr, and conclude that the system is representative of the progenitors of the current population of cataclysmic variables. It will most likely evolve to become an SU UMa type dwarf nova.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Althaus, L. G., & Benvenuto, O. G. 1998, MNRAS, 296, 206
    • Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481
    • Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. H. 1998, A&A, 337, 403
    • Berger, L., Koester, D., Napiwotzki, R., Reid, I. N., & Zuckerman, B. 2005, A&A, 444, 565
    • Beuermann, K., Baraffe, I., Kolb, U., & Weichhold, M. 1998, A&A, 339, 518
    • Claret, A. 2000, A&A, 363, 1081
    • Collier-Cameron, A., & Unruh, Y. C. 1994, MNRAS, 269, 814
    • Coluzzi, R. 1999, VizieR Online Data Catalog, 6071
    • Debes, J. H. 2006, ApJ, 652, 636
    • Dupuis, J., Fontaine, G., Pelletier, C., & Wesemael, F. 1993, ApJS, 84, 73
    • Eggleton, P. P. 1983, ApJ, 268, 368
    • Fischer, A., & Beuermann, K. 2001, A&A, 373, 211
    • Granzer, T., Schüssler, M., Caligari, P., & Strassmeier, K. G. 2000, A&A, 355, 1087
    • Holzwarth, V., & Schüssler, M. 2003, A&A, 405, 303
    • Hubeny, I., & Lanz, T. 1995, ApJ, 439, 875
    • Hussain, G. A. J., Allende Prieto, C., Saar, S. H., & Still, M. 2006, MNRAS, 367, 1699
    • Karl, C. A., Napiwotzki, R., Heber, U., et al. 2005, A&A, 434, 637
    • Kawka, A., Vennes, S., Dupuis, J., Chayer, P., & Lanz, T. 2008, ApJ, 675, 1518
    • King, A. R., & Cannizzo, J. K. 1998, ApJ, 499, 348
    • Kochukhov, O., Makaganiuk, V., & Piskunov, N. 2010, A&A, 524, A5
    • Koester, D., & Wilken, D. 2006, A&A, 453, 1051
    • Koester, D., Dreizler, S., Weidemann, V., & Allard, N. F. 1998, A&A, 338, 612
    • Kupka, F., Piskunov, N., Ryabchikova, T. A., Stempels, H. C., & Weiss, W. W. 1999, A&AS, 138, 119
    • Lanz, T., & Hubeny, I. 1995, ApJ, 439, 905
    • Marsh, T. R., & Horne, K. 1988, MNRAS, 235, 269
    • Panei, J. A., Althaus, L. G., & Benvenuto, O. G. 2000, A&A, 353, 970
    • Piskunov, N. E., Kupka, F., Ryabchikova, T. A., Weiss, W. W., & Jeffery, C. S. 1995, A&AS, 112, 525
    • Ritter, H. 1986, A&A, 169, 139
    • Ritter, H. 2008, Proceedings of the School of Astrophysics, Francesco Lucchin, Mem. Soc. Astron. Italiana, in press [arXiv:0809.1800]
    • Rutten, R. G. M., & Dhillon, V. S. 1994, A&A, 288, 773
    • Schmidt, G. D., Szkody, P., Vanlandingham, K. M., et al. 2005, ApJ, 630, 1037
    • Schmidt, G. D., Szkody, P., Henden, A., et al. 2007, ApJ, 654, 521
    • Schreiber, M. R., & Gänsicke, B. T. 2003, A&A, 406, 305
    • Schwope, A. D., Brunner, H., Hambaryan, V., & Schwarz, R. 2002, in The Physics of Cataclysmic Variables and Related Objects, ed. B. T. Gänsicke, K. Beuermann, & K. Reinsch, ASP Conf. Ser., 261, 102
    • Skilling, J., & Bryan, R. K. 1984, MNRAS, 211, 111
    • Smith, D. A., & Dhillon, V. S. 1998, MNRAS, 301, 767
    • Spruit, H. C. 1998, unpublished [arXiv:astro-ph/9806141]
    • Strassmeier, K. G. 1999, A&A, 347, 225
    • Strassmeier, K. G., Pichler, T., Weber, M., & Granzer, T. 2003, A&A, 411, 595
    • Suijs, M. P. L., Langer, N., Poelarends, A., et al. 2008, A&A, 481, L87
    • Taam, R. E., & Ricker, P. M. 2010, New A Rev., 54, 65
    • Tappert, C., Gänsicke, B. T., Schmidtobreick, L., et al. 2007, A&A, 474, 205
    • Watson, C. A., & Dhillon, V. S. 2001, MNRAS, 326, 67
    • Watson, C. A., Dhillon, V. S., & Shahbaz, T. 2006, MNRAS, 368, 637
    • Watson, C. A., Steeghs, D., Shahbaz, T., & Dhillon, V. S. 2007, MNRAS, 382, 1105
    • Webbink, R. F. 2008, in Short-Period Binary Stars: Observations, Analyses, and Results, ed. E. F. Milone, D. A. Leahy, & D. W. Hobill (Heidelberg: Springer), Astrophys. Space Sci. Libr., 352, 233
    • Zorotovic, M., Schreiber, M. R., Gänsicke, B. T., & Nebot Gómez-Morán, A. 2010, A&A, 520, A86
    • Zuckerman, B., Koester, D., Reid, I. N., & Hünsch, M. 2003, ApJ, 596, 477
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article