Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Karunaratne, M. S. A.; Kyaw, Si; Jones, A.; Morrell, R.; Thomson, R. C. (2016)
Publisher: Kluwer
Journal: Journal of Materials Science
Languages: English
Types: Article
Subjects: Materials Science(all), Mechanical Engineering, Mechanics of Materials
The coefficient of thermal expansion (CTE) of nickel-based superalloys and bond coat layers was modelled by considering contributions from their constituent phases. The equilibrium phase composition of the examined materials was determined using thermodynamic equilibrium software with an appropriate database for Ni-based alloys, whereas the CTE and elastic properties of the principal phases were modelled using published data. The CTEs of individual phases were combined using a number of approaches to determine the CTE of the phase aggregate. As part of this work, the expansion coefficients of the superalloy IN-738LC and bond coat Amdry-995 were measured as a function of temperature and compared with the model predictions. The predicted values were also validated with the published data for the single-crystal superalloy CMSX-4 and a number of other Ni-based alloy compositions at 1000 K. A very good agreement between experiment and model output was found, especially up to 800  $$^\circ $$ � C. The modelling approaches discussed in this paper have the potential to be an extremely useful tool for the industry and for the designers of new coating systems.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Sims CT, Stoloff NS, Hagel WC (1987) Superalloys II: hightemperature materials for aerospace and industrial power. Wiley, New York
    • 2. Reed RC (2006) The superalloys: fundamentals and applications. Cambridge University Press, Cambridge
    • 3. Jena AK, Chaturvedi MC (1984) The role of alloying elements in the design of nickel-base superalloys. J Mater Sci 19(10):3121- 3139. doi:10.1007/BF00549796
    • 4. Tawancy HM, Sridhar N, Abbas NM, Rickerby DS (2000) Comparative performance of selected bond coats in advanced thermal barrier coating systems. J Mater Sci 35(14):3615-3629. doi:10.1023/A:1004825932601
    • 5. Evans HE, Taylor MP (1997) Creep relaxation and the spallation of oxide layers. Surf Coat Technol 94-95(1-3):27-33
    • 6. Liang JJ, Wei H, Zhu YL, Sun XF, Hu ZQ, Dargusch MS, Yao X (2011) Phase constituents and thermal expansion behavior of a NiCrAlYRe coating alloy. J Mater Sci 46(2):500-508. doi:10. 1007/s10853-010-4953-y
    • 7. Sung PK, Poirier DR (1998) Estimation of densities and coefficients of thermal expansion of solid Ni-base superalloys. Mater Sci Eng A 245(1):135-141
    • 8. Giamei AF, Pearson DD, Anton DL (1985) c: The key to superalloy behaviour. In: Koch CC, Liu CT, Stoloff NS (eds) High-temperature ordered intermetallic alloys. Materials Research Society Symposia Proceedings, vol. 39, p 294-308. Materials Research Society, Pittsburgh
    • 9. Hull FC, Hwang SK, Wells JM, Jaffee RI (1987) Effect of composition on thermal expansion of alloys used in power generation. J Mater Eng 9(1):81-92
    • 10. Morrow H, Sponseller DL, Semchyshen M (1975) The effects of molybdenum and aluminum on the thermal expansion coefficients of nickel-base alloys. Metall Mater Trans A 6(3):477-485
    • 11. Pavlovic AS, Babu VS, Seehra MS (1996) High-temperature thermal expansion of binary alloys of Ni with Cr, Mo and Re: a comparison with molecular dynamics simulations. J Phys 8(18):3139-3149
    • 12. Mei J, Cooper BR, Hao YG, Vanscoy FL (1994) Molecular dynamics modeling using abinitio interatomic potentials for thermal properties of ni-rich alloys. In: Stocks GM, Turchi PEA (eds) Alloy modeling and design. Symposium on alloy modeling and design, held during the 1993 Materials Week of the MineralsMetals-and-Materials-Society, Pittsburgh, 18-20 October, 1993, p 165-174
    • 13. Yamamoto R, Kadoya Y, Kawajand H, Magoshj R, Noda T, Hamano S, SUeta, Isobe S (2002) New wrought Ni-based superalloys with low thermal expansion for 700 C steam turbines. In: Lecomte-Beckers J, Carton M, Schubert F, PJ Ennis (eds) Materials for advanced power engineering 2002. Proceedings of the seventh Lie`ge conference on energy and technology, vol. 21, p 1351-1360. Forschungszentrum Ju¨lich GmbH and Institut fu¨r Werkstoffe und Verfahren der Energietechnik, September 30-October 3
    • 14. Dosovitskiy GA, Samoilenkov SV, Kaul AR, Rodionov DP (2009) Thermal expansion of Ni-W, Ni-Cr, and Ni-Cr-W alloys between room temperature and 800 C. Int J Thermophys 30(6):1931-1937
    • 15. Kim DE, Shang SL, Liu ZK (2012) Effects of alloying elements on thermal expansions of c-Ni and c0-Ni3Al by first-principles calculations. Acta Metall 60(4):1846-1856
    • 16. Touloukian YS (1970) Thermal expansion, metallic elements and alloys. Thermophysical properties of matter: the TPRC data series; a comprehensive compilation of data, vol. 12. IFI/Plenum, New York
    • 17. Arbuzov MP, Zelenkov IA (1964) Thermal expansion of certain transition metals and alloys on their base. Fiz Met Metalloved 18(2):311-312
    • 18. Taylor A, Floyd RW (1952-1953) The constitution of nickel-rich alloys of the nickel-titanium-aluminium system. J Inst Met 81:25
    • 19. Williams RK, Graves RS, Weaver FJ, McElroy DL (1984) Physical properties of Ni3Al containing 24 and 25 atomic percent aluminum. In: High-temperature ordered intermetallic alloys I. MRS Proceedings, vol. 39, p 505-512. Materials Research Society, 1984. Symposium G
    • 20. Ramesh R, Pathiraj B, Kolster BH (1992) Thermal evidence for the structural instability in Ni3Al alloys. Mater Sci Eng A 152(1--2):60-66 Proceedings of the Second International ASM Conference on High Temperature Aluminides and Intermetallics
    • 21. Mohan Rao PV, Satyanarayana Murthy K, Suryanarayana SV (1993) High temperature thermal expansion characteristics of Ni3Al alloys. J Alloys Compd 190:L33-L35
    • 22. Porter WD, Maziasz PJ (1993) Thermal expansion data on several iron- and nickel-aluminide alloys. Scr Metall Mater 29(8):1043-1048
    • 23. Noebe RD, Bowman RR, Nathal MV (1993) Physical and mechanical properties of the B2 compound NiAl. Int Mater Rev 38(4):193-232
    • 24. Fritscher K, Leyens C, Peters M (1995) Development of a lowexpansion bond coating for Ni-base superalloys. Mater Sci Eng A 190(1-2):253-258
    • 25. Turner PS (1946) Thermal-expansion stresses in reinforced plastics. J Res Natl Bur Stand 37(4):239-250 Research Paper RP1745. U. S, Department of Commerce
    • 26. Fahmy AA, Ragai AN (1970) Thermal-expansion behavior of two-phase solids. J Appl Phys 41:5108-5111 Symposium on thermal expansion of solids/composites, carbides
    • 27. Hermosilla U, Karunaratne MSA, Jones IA, Hyde TH, Thomson RC (2009) Modelling the high temperature behaviour of TBCs using sequentially coupled microstructural-mechanical FE analyses. Mater Sci Eng A 513-514:302-310
    • 28. Wakashima K, Otsuka M, Umekawa S (1974) Thermal expansions of heterogeneous solids containing aligned ellipsoidal inclusions. J Compos Mater 8(10):391-404
    • 29. Budiansky B (1965) On the elastic moduli of some heterogeneous materials. J Mech Phys Solids 13(4):223-227
    • 30. Eshelby JD (1951) The force on an elastic singularity. Philos Trans R Soc Lond Ser A 244:87-112
    • 31. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond Ser A 241(1226):376-396
    • 32. Press William H, Teukolsky Saul A, Vetterling William T, Flannery Brian P (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge
    • 33. Davies RH, Dinsdale AT, Gisby JA, Robinson JAJ, Martin SM (2002) MTDATA-thermodynamics and phase equilibrium software from the National Physical Laboratory. CALPHAD 26(2):229-271
    • 34. Saunders N (1996) Phase diagram calculations for Ni-based superalloys. In: Kissinger RD, Nathal MV, Deye DJ, Pollock TM, Anton DL, Woodford DA, Cetel AD (eds) Proceedings of the eighth international symposium on superalloys (superalloys 1996), p 101-110, Seven Springs. The Minerals, Metals & Materials Society
    • 35. Karunaratne MSA, Ogden SL, Kenny SD, Thomson RC (2009) A multicomponent diffusion model for prediction of microstructural evolution in coated Ni-based superalloy systems. Mater Sci Technol 25(2):287-299
    • 36. Karunaratne MSA, Di Martino I, Ogden SL, Oates DL, Thomson RC (2011) Modeling of microstructural evolution in an MCrAlY overlay coating on different superalloy substrates. Metall Mater Trans A 43(2):774-788
    • 37. Wang Y, Wang JJ, Zhang H, Manga VR, Shang SL, Chen LQ, Liu ZK (2010) A first-principles approach to finite temperature elastic constants. J Phys 22:1-8 Article Number: 225404
    • 38. Alers GA, Neighbours JR, Sato H (1960) Temperature dependent magnetic contributions to the high field elastic constants of nickel and an Fe-Ni alloy. J Phys Chem Solids 13(1-2):40-55
    • 39. Tanaka K, Koiwa M (1996) Single-crystal elastic constants of intermetallic compounds. Intermetallics 4:S29-S39 Supplement 1
    • 40. Rusovic´ N, Warlimont H (1977) The elastic behaviour of b2-NiAl alloys. Phys Status Solidi A 44(2):609-619
    • 41. Lenkkeri JT, La¨hteenkorva EE (1978) An investigation of elastic moduli of vanadium-chromium alloys. J Phys 8(8):1643-1651
    • 42. Vegard L (1921) Die konstitution der mischkristalle und die raumfu¨llung der atome. Zeitschrift fu¨r Physik 5(1):17-26
    • 43. Kablov EN, Petrushin NV, Bronfin MB, Alekseev AA (2006) Specific features of rhenium-alloyed single-crystal nickel superalloys. Russ Metall 2006(5):406-414
    • 44. Davies RH, Dinsdale AT, Gisby JA (1998) MTDATA Handbook: Application Interface Programming Guide. National Physical Laboratory, Teddington
    • 45. Nelder JA, Mead R (1965) A simplex-method for function minimization. Comput J 7(4):308-313
    • 46. Hahn TA, Kirby RK (1972) Thermal expansion of platinum from 293 to 1900 K. In: Graham MG, Hagy HE (eds) Thermal expansion symposium 1971, vol 3., AIP conference proceedings, American Institute of Physics, New York, p 87-95 47. Quested PN, Brooks RF, Chapman L, Morrell R, Youssef Y, Mills KC (2009) Measurement and estimation of thermophysical properties of nickel based superalloys. Mater Sci Technol 25(2): 154-162
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article