LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bhatia, Prateek
Languages: English
Types: Doctoral thesis
Subjects: sub_healthsciences
Functional overexpression of the ATP binding cassette (ABC) transporters at the\ud cell surface is thought to be responsible for clinical multidrug resistance (MDR)\ud in tumours of the brain. Inhibition of ABC transporters by existing inhibitors has\ud proven to be inconclusive.\ud This research program hypothesized an alternative location for the ABC\ud transporters in glioblastoma cells and also proposed to develop stationary phases\ud for the identification of ABC transporters inhibitors.\ud Expression profile investigation of P-glycoprotein (PGP), multidrug resistant\ud protein 1 (MRP1), multidrug resistant protein 2 (MRP2) and the breast cancer\ud resistant protein (BCRP) in glioblastoma multiforme cell lines and clinical patient\ud specimens suggested varying levels of expression. Localisation studies by\ud confocal microscopy confirmed cell surface expression and also indicated that\ud BCRP was localised at the nucleus of the T98 and LN229 cells. Immunoblots of\ud LN229 nuclear extracts indicated ~ 2 fold higher expression of BCRP as\ud compared to cytoplasmic extracts. Immunohistochemistry studies with clinical\ud samples confirmed the nuclear and perinuclear location of BCRP. IC50 value for\ud Mitoxantrone (MTX); a BCRP substrate was calculated as 0.29 ± 0.020 μM for\ud the LN229 cell line, and pre-treatment with the cell impermeant fumitremorgin C\ud 3\ud (FTC, 5 μM) slightly reduced the IC50 value to 0.16 ± 0.087 μM. This\ud refractoriness to FTC is in contrast with the literature showing a ~ 6-fold\ud reduction in IC50 value of MTX upon pre-treatment with FTC in human breast\ud cancer MCF-7 cell line with ectopic expression of BCRP. The results supported\ud the notion that the nuclear presence of endogenously expressed BCRP actively\ud extrudes MTX, and that because FTC is not able to inhibit the nuclear BCRP,\ud significant reduction in the IC50 was not observed. The results suggest that the\ud treatment of clinical MDR should be expanded to include inhibition of ABC\ud transporters functioning at the nuclear membrane.\ud Cellular membrane affinity chromatography columns were developed for the\ud study of the MRP1, MRP2 and BCRP using Spodoptera frugiperda (Sf9) cells\ud that had been stably transfected with human Mrp1, Mrp2 or Bcrp cDNA. The\ud resulting columns and a control column were characterized using frontal affinity\ud chromatography using [3H]-etoposide as the marker ligand and etoposide,\ud benzbromarone and MK571 as the displacers on the CMAC(Sf9MRP1) column,\ud etoposide and furosemide on the CMAC(Sf9MRP2) column and etoposide and\ud fumitremorgin C on the CMAC(Sf9BCRP) column. The binding affinities obtained\ud from the chromatographic studies were consistent with the data obtained using\ud non-chromatographic techniques and the results indicate that the immobilized\ud MRP1, MRP2 and BCRP transporters retained their ability to selectively bind\ud known ligands. The results indicated that the CMAC(Sf9MRP1), CMAC(Sf9MRP2)\ud and CMAC(Sf9BCRP) columns can be used for the study of binding to the MRP1,\ud 4\ud MRP2 and BCRP transporters and that membranes from the Sf9 cell line can be\ud used to prepare CMAC columns.\ud This study expands our knowledge of the ABC transporters and makes a case for\ud the finding that nuclear efflux proteins play a pivotal role in the overall MDR\ud phenotype in CNS tumours. Also the CMAC columns developed and\ud characterised provide a tool to study the binding of potential therapeutic\ud candidates to ABC proteins.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 34 34 36 43 45 45 48 Nies, A.T., Cantz, T., Brom, M., Leier, I. & Keppler, D. 1998, Hepatology, vol. 28, no. 5, pp. 1332-1340.
    • Norman, B.H. 1998, Drugs of the Future, vol. 23, no. 9, pp. 1001-1014.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article