LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Linton, CL; Grant-Muller, S; Gale, WF (2015)
Publisher: Taylor & Francis (Routledge)
Languages: English
Types: Article
Subjects:
Transport accounts for around a quarter of CO2 emissions globally. Transport modelling provides a useful means to explore the dynamics, scale and magnitude of transport related emissions. This paper explores the modelling tools available for analysing the emissions of CO2 from transport. Covering a range of techniques from transport microsimulation to global techno-economic models, this review provides insight into the various advantages and shortcomings of these tools. The paper also examines the value of having a broad range of perspectives for analysing emissions from transport. The paper concludes by suggesting that the broad range of models creates a rich environment for exploring a spectrum of policy questions around the emissions from transport, and the potential for combining modelling approaches further enhances the understanding that can be attained.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Anable, J., Brand, C., Tran, M., & Eyre, N. (2012). Modelling transport energy demand: A socio-technical approach. Energy Policy, 41, 125 - 138.
    • Atkins-ITS. (2013). SATURN manual. Retrieved from http://www.saturnsoftware.co.uk/ saturnmanual/chapters.html: Atkins and Institute for Transport Studies
    • Axhausen, K. W., & Ga¨rling, T. (1992). Activity-based approaches to travel analysis: Conceptual frameworks, models, and research problems. Transport Reviews, 12, 323 - 341.
    • Brand, C., Tran, M., & Anable, J. (2012). The UK transport carbon model: An integrated life cycle approach to explore low carbon futures. Energy Policy, 41, 107 - 124.
    • Br o¨mmelstroet, M. T., & Bertolini, L. (2011). The role of transport-related models in urban planning practice. Transport Reviews, 31, 139 - 143.
    • Brun, B., & Hansen, S. (2009). TRANS-TOOLS user guide version 2.0. Seville: EC Joint Research Centre.
    • Davidson, W., Donnelly, R., Vovsha, P., Freedman, J., Ruegg, S., Hicks, J., . . . Picado, R. (2007). Synthesis of first practices and operational research approaches in activity-based travel demand modeling. Transportation Research Part A: Policy and Practice, 41, 464 - 488.
    • DECC. 2013. 2012 UK greenhouse gas emissions, provisional figures. UK greenhouse gas emissions statistics. London: Author.
    • De Dios Ort u´zar, J., & Willumsen, L. G. (2011). Modelling transport. Chichester: Wiley.
    • Dougherty, M., Fox, K., Cullip, M., & Boero, M. (2000). Technological advances that impact on microsimulation modelling. Transport Reviews, 20, 145 - 171.
    • Dowling, R., Holland, J., & Huang, A. (2002). Guidelines for applying traffic microsimulation modelling software. Oakland, CA: Dowling Associates and California Department of Transportation.
    • Ferreira, L. (1982). Car fuel consumption in urban traffic: The results of a survey in Leeds using instrumented vehicles (Working Paper No. 162). Leeds: Institute of Transport Studies, University of Leeds.
    • Fiorello, D., Schade, W., Akkermans, L., Krail, M., Schade, B., & Shepherd, S. P. (2012). Results of the technoeconomic analysis of the R&D and transport policy packages for the time horizons 2020 and 2050. In GHG-TransPoRD (Reducing greenhouse-gas emissions of transport beyond 2020: Linking R&D, transport policies and reduction targets). Milan: European Commission.
    • Fishwick, P. (2007). Handbook of dynamic system modelling. London: Chapman & Hall.
    • Garcia, R. (2005). Uses of agent-based modeling in innovation/new product development research∗. Journal of Product Innovation Management, 22, 380 - 398.
    • Gipps, P. G. (1981). A behavioural car-following model for computer simulation. Transportation Research Part B: Methodological, 15, 105 - 111.
    • Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., . . . Deangelis, D. L. (2006). A standard protocol for describing individual-based and agent-based models. Ecological Modelling, 198, 115 - 126.
    • Gudmundsson, H. (2011). Analysing models as a knowledge technology in transport planning. Transport Reviews, 31, 145 - 159.
    • Hatzopoulou, M., Hao, J., & Miller, E. (2011). Simulating the impacts of household travel on greenhouse gas emissions, urban air quality, and population exposure. Transportation, 38, 871 - 887.
    • Hensher, D. A., & Button, K. J. (2008). Handbook of transport modelling. Oxford: Elsevier.
    • Hensher, D. A., Rose, J. M., Leong, W., Tirachini, A., & Li, Z. (2013). Choosing public transport - incorporating Richer behavioural elements in modal choice models. Transport Reviews, 33, 92 - 106.
    • Intergovernmental Panel on Climate Change. (2007). Technical summary. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, . . . H. L. Miller (Eds.), Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 19 - 91). Cambridge: Cambridge University Press.
    • International Council for Clean Transportation. (2012). Global transportation roadmap - model documentation and user guide. San Francisco: Author.
    • International Energy Agency. 2009. Transport energy and CO2: Moving towards sustainability. Paris: OECD.
    • Kim, S. H., Edmonds, J., Lurz, J., Smith, S. J., & Wise, M. (2012). The ObjECTS framework for integrated assessment: Hybrid modeling of transportation. The Energy Journal, (Special Issue 2), 63 - 92.
    • K o¨hler, J., Whitmarsh, L., Nykvist, B., Schilperoord, M., Bergman, N., & Haxeltine, A. (2009). A transitions model for sustainable mobility. Ecological Economics, 68, 2985 - 2995.
    • Kyle, P., & Kim, S. H. (2011). Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands. Energy Policy, 39, 3012 - 3024.
    • Liu, R. (2005). The DRACULA dynamic network microsimulation model. In R. Kitamura & M. Kuwahara (Eds.), Simulation approaches in transportation analysis (pp. 23 - 56). New York: Springer.
    • Liu, R. (2007). DRACULA 2.4 user manual. Leeds: Institute for Transport Studies.
    • Macal, C. M., & North, M. J. (2010). Tutorial on agent-based modelling and simulation. Journal of Simulation, 4, 151- 162.
    • Mcnally, M. G. (2008). The four-step model. In D. A. Hensher & K. J. Button (Eds.), Handbook of transport modelling (pp. 35 - 52). Oxford: Elsevier.
    • Mcnally, M. G., & Rindt, C. R. (2008). The activity-based approach. In D. A. Hensher & K. J. Button (Eds.), Handbook of transport modelling (2nd ed., pp. 55 - 72). Oxford: Elsevier.
    • Paltsev, S., Reilly, J. M., Jacoby, H. D., Eckaus, R. S., Mcfarland, J. R., Sarofim, M. C., . . . Babiker, M. H. (2005). The MIT emissions prediction and policy analysis (EPPA) model: Version 4. Cambridge, MA: MIT Joint Program on the Science and Policy of Global Change.
    • Pfaffenbichler, P. (2003). The strategic, dynamic and integrated urban land use and transport model MARS (Metropolitan Activity Relocation Simulator) (Doctoral thesis). Vienna University of Technology.
    • Pfaffenbichler, P. (2011). Modelling with systems dynamics as a method to bridge the gap between politics, planning and science? lessons learnt from the development of the land use and transport model MARS. Transport Reviews, 31, 267- 289.
    • Pfaffenbichler, P., Emberger, G., & Shepherd, S. (2010). A system dynamics approach to land use transport interaction modelling: The strategic model MARS and its application. System Dynamics Review, 26, 262- 282.
    • Proost, S., & Van Dender, K. (2011). What long-term road transport future? Trends and policy options. Review of Environmental Economics and Policy, 5, 44 - 65.
    • PTV Group. (2015). Emissions modelling. Retrieved January 16, 2015, from http://vision-traffic. ptvgroup.com/en-us/products/ptv-vissim/use-cases/emissions-modelling/
    • Quadstone Paramics. (2013). Paramics full feature list. Retrieved July 5, 2013, from http://www. paramics-online.com/paramics-features.php
    • Research Centre for Transport Planning and Traffic Engineering. (2009). MARS (Metropolitan Activity Relocation Simulator). Retrieved September 2013, from http://www.ivv.tuwien.ac.at/forschung/ mars-metropolitan-activity-relocation-simulator.html
    • Rothengatter, W., Schade, W., Martino, A., Roda, M., Davies, A., Devereux, L., & Williams, I. (2000). ASTRA - assessment of transport strategies. Karlsruhe: Commission of the European Communities.
    • Samaras, Z., & Ntziachristos, L. (1998). Average hot emission factors for passenger cars and light duty trucks. LAT report.
    • Samaras, Z., Ntziachristos, L., Burzio, G., Toffolo, S., Tatschl, R., Mertz, J., & Monzon, A. (2012). Development of a methodology and tool to evaluate the impact of ICT measures on road transport emissions. In P. Papaioannou (Ed.), Transport research arena 2012 (pp. 3418 - 3427). Amsterdam: Elsevier Science.
    • Schaap, N. T. W., & van de Riet, O. (2012). Behavioral insights model: Overarching framework for applying behavioral insights in transport policy analysis. Transportation Research Record, (2322), 42 - 50.
    • Schade, W., & Krail, M. (2012). Aligned R&D and transport policy to meet EU GHG reduction targets. In GHG-TransPoRD (Reducing greenhouse-gas emissions of transport beyond 2020: Linking R&D, transport policies and reduction targets). Karlshrue: European Commission.
    • Schafer, A. (2012). Introducing behavioral change in transportation into energy/economy/environment models. World Bank Policy Research Working Paper.
    • Shafiei, E., Stefansson, H., Asgeirsson, E. I., Davidsdottir, B., & Raberto, M. (2012). Integrated agentbased and system dynamics modelling for simulation of sustainable mobility. Transport Reviews, 33, 44 - 70.
    • Shafiei, E., Thorkelsson, H., A´ sgeirsson, E. I., Davidsdottir, B., Raberto, M., & Stefansson, H. (2012). An agent-based modeling approach to predict the evolution of market share of electric vehicles: A case study from Iceland. Technological Forecasting and Social Change, 79, 1638- 1653.
    • Shepherd, S., Bonsall, P., & Harrison, G. (2012). Factors affecting future demand for electric vehicles: A model based study. Transport Policy, 20, 62- 74.
    • Shepherd, S. P. (2014). A review of system dynamics models applied in transportation. Transportmetrica B: Transport Dynamics, 2, 1 - 23.
    • Smit, R., Smokers, R., Schoen, E., & Hensema, A. (2006). A new modelling approach for road traffic emissions: VERSIT + LD - background and methodology. Delft: TNO.
    • Stern, E., & Richardson, H. W. (2005). Behavioural modelling of road users: Current research and future needs. Transport Reviews, 25, 159- 180.
    • Stern, N. (2007). The economics of climate change: The stern review. Cambridge: Cambridge University Press.
    • Sternman, J. (2000). Business dynamics: Systems thinking and modeling for a complex world. Boston, MA: Irwin McGraw-Hill.
    • US Energy Information Administration. (2011). Transportation model of the World Energy Projection System Plus: Model documentation 2011. Washington, DC: US Department of Energy, Office of Energy Analysis.
    • US EPA. (2003). User's guide to MOBILE6.1 and MOBILE6.2, mobile source emission factor model. Washington, DC: Author.
    • Verkehr, P. T. (2011). VISSIM 5.30- 05 user manual. Karlsruhe: Germany.
    • Waisman, H.-D., Guivarch, C., & Lecocq, F. (2013). The transportation sector and low-carbon growth pathways: Modelling urban, infrastructure, and spatial determinants of mobility. Climate Policy, 13, 106- 129.
    • Wegener, M. (2011). From macro to micro - how much micro is too much? Transport Reviews, 31, 161- 177.
    • Willumsen, L. G. (2008). Travel networks. In D. A. Hensher & K. J. Button (Eds.), Handbook of transport modelling (pp. 203- 219). Oxford: Elesvier.
    • Wismans, L., Van Berkum, E., & Bliemer, M. (2011). Modelling externalities using dynamic traffic assignment models: A review. Transport Reviews, 31, 521- 545.
    • Young, W., & Weng, T. (2005). Data and parking simulation models. In R. Kitamura & M. Kuwahara (Eds.), Simulation approaches in transportation analysis (pp. 235- 268). New York: Springer.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article